Division rings of quotients and central elements of multiparameter quantizations
Sbornik. Mathematics, Tome 187 (1996) no. 6, pp. 835-855 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that the algebra of regular functions on quantum $m\times n$ matrices admits a division ring of quotients and that this division ring is a division ring of twisted rational functions. A description is given of the field of central elements in the division ring of rational functions on quantum $m\times n$ matrices in the one-parameter and multiparameter cases. In the one-parameter case for $q$ of a general form the center is a purely transcendental extension of a field $\mathbb K$ of degree $l$ (were $l$ is the greatest common divisor of $m$ and $n$) if both numbers $m/l$ and $n/l$ are odd. If at least one of the numbers $m/l$ and $n/l$ is even, then the center is scalar. In the multiparameter case the answer depends upon the parameters $P$,$Q$, $c$. Here the generators of the center are described and it is proved that the center is scalar for the case of even $n$ and parameters of a general form. Analogous result are obtained for the division ring of rational functions on a quantum Borel subgroup of $GL_{P,Q,c}(n)$.
@article{SM_1996_187_6_a3,
     author = {V. G. Mosin and A. N. Panov},
     title = {Division rings of quotients and central elements of multiparameter quantizations},
     journal = {Sbornik. Mathematics},
     pages = {835--855},
     year = {1996},
     volume = {187},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_6_a3/}
}
TY  - JOUR
AU  - V. G. Mosin
AU  - A. N. Panov
TI  - Division rings of quotients and central elements of multiparameter quantizations
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 835
EP  - 855
VL  - 187
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_6_a3/
LA  - en
ID  - SM_1996_187_6_a3
ER  - 
%0 Journal Article
%A V. G. Mosin
%A A. N. Panov
%T Division rings of quotients and central elements of multiparameter quantizations
%J Sbornik. Mathematics
%D 1996
%P 835-855
%V 187
%N 6
%U http://geodesic.mathdoc.fr/item/SM_1996_187_6_a3/
%G en
%F SM_1996_187_6_a3
V. G. Mosin; A. N. Panov. Division rings of quotients and central elements of multiparameter quantizations. Sbornik. Mathematics, Tome 187 (1996) no. 6, pp. 835-855. http://geodesic.mathdoc.fr/item/SM_1996_187_6_a3/

[1] Reshetikhin N. Yu., Takhtadzhyan L. A., Faddeev L. D., “Kvantovanie grupp i algebr Li”, Algebra i analiz, 1:1 (1989), 178–206 | MR | Zbl

[2] Drinfeld V. G., “Quantum groups”, Proc. of the International Congress of Mathematicians, V. 1, 1986, 789–820 | MR

[3] Demidov E. E., “O nekotorykh aspektakh teorii kvantovykh grupp”, UMN, 48:6 (1993), 39–74 | MR | Zbl

[4] Demidov E. E., “Moduli nad kvantovoi gruppoi Veilya”, Vestn. MGU. Ser. 1. Matem., mekh., 1993, no. 1, 53–56 | MR | Zbl

[5] Panov A. N., “Telo ratsionalnykh funktsii na $GL_q(n,K)$”, Funkts. analiz, 28:2 (1994), 75–77 | MR | Zbl

[6] Panov A. N., “Tela skruchennykh ratsionalnykh funktsii i telo ratsionalnykh funktsii na $GL_q(K)$”, Algebra i analiz, 7:1 (1995), 153–169 | MR | Zbl

[7] Diksme Zh., Universalnye obertyvayuschie algebry, Mir, M., 1978 | MR