Codimension one foliations of flat 3-manifolds
Sbornik. Mathematics, Tome 187 (1996) no. 6, pp. 823-833

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study $C^r$ ($r\geqslant 2$) codimension one foliations of closed 3-manifolds. We describe all closed flat 3-manifolds that admit foliations without compact leaves, and all closed flat 3-manifolds on which every $C^r$ ($r\geqslant 2$) codimension one foliation has a compact leaf and this leaf is either a 2-torus or a Klein bottle.
@article{SM_1996_187_6_a2,
     author = {V. K. Mamaev},
     title = {Codimension one foliations of flat 3-manifolds},
     journal = {Sbornik. Mathematics},
     pages = {823--833},
     publisher = {mathdoc},
     volume = {187},
     number = {6},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_6_a2/}
}
TY  - JOUR
AU  - V. K. Mamaev
TI  - Codimension one foliations of flat 3-manifolds
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 823
EP  - 833
VL  - 187
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_6_a2/
LA  - en
ID  - SM_1996_187_6_a2
ER  - 
%0 Journal Article
%A V. K. Mamaev
%T Codimension one foliations of flat 3-manifolds
%J Sbornik. Mathematics
%D 1996
%P 823-833
%V 187
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1996_187_6_a2/
%G en
%F SM_1996_187_6_a2
V. K. Mamaev. Codimension one foliations of flat 3-manifolds. Sbornik. Mathematics, Tome 187 (1996) no. 6, pp. 823-833. http://geodesic.mathdoc.fr/item/SM_1996_187_6_a2/