Codimension one foliations of flat 3-manifolds
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 187 (1996) no. 6, pp. 823-833
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper we study $C^r$ ($r\geqslant 2$) codimension one foliations of closed 3-manifolds. We describe all closed flat 3-manifolds that admit foliations without compact leaves, and all closed flat 3-manifolds on which every $C^r$ ($r\geqslant 2$) codimension one foliation has a compact leaf and this leaf is either a 2-torus or a Klein bottle.
			
            
            
            
          
        
      @article{SM_1996_187_6_a2,
     author = {V. K. Mamaev},
     title = {Codimension one foliations of flat 3-manifolds},
     journal = {Sbornik. Mathematics},
     pages = {823--833},
     publisher = {mathdoc},
     volume = {187},
     number = {6},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_6_a2/}
}
                      
                      
                    V. K. Mamaev. Codimension one foliations of flat 3-manifolds. Sbornik. Mathematics, Tome 187 (1996) no. 6, pp. 823-833. http://geodesic.mathdoc.fr/item/SM_1996_187_6_a2/
