Invariant measures generated by higher conservation laws for the Korteweg–de Vries equations
Sbornik. Mathematics, Tome 187 (1996) no. 6, pp. 803-822 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The well-posedness of the Cauchy problem that is periodic with respect to the spatial variable is proved for the Korteweg–de Vries equation. For dynamical systems generated by this equation on appropriate phase spaces the invariance of the Borel measures associated with the higher conservation laws is proved.
@article{SM_1996_187_6_a1,
     author = {P. E. Zhidkov},
     title = {Invariant measures generated by higher conservation laws for {the~Korteweg{\textendash}de~Vries} equations},
     journal = {Sbornik. Mathematics},
     pages = {803--822},
     year = {1996},
     volume = {187},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_6_a1/}
}
TY  - JOUR
AU  - P. E. Zhidkov
TI  - Invariant measures generated by higher conservation laws for the Korteweg–de Vries equations
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 803
EP  - 822
VL  - 187
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_6_a1/
LA  - en
ID  - SM_1996_187_6_a1
ER  - 
%0 Journal Article
%A P. E. Zhidkov
%T Invariant measures generated by higher conservation laws for the Korteweg–de Vries equations
%J Sbornik. Mathematics
%D 1996
%P 803-822
%V 187
%N 6
%U http://geodesic.mathdoc.fr/item/SM_1996_187_6_a1/
%G en
%F SM_1996_187_6_a1
P. E. Zhidkov. Invariant measures generated by higher conservation laws for the Korteweg–de Vries equations. Sbornik. Mathematics, Tome 187 (1996) no. 6, pp. 803-822. http://geodesic.mathdoc.fr/item/SM_1996_187_6_a1/

[1] Zhidkov P. E., “Ob invariantnoi mere dlya nelineinogo uravneniya Shredingera”, DAN SSSR, 317:3 (1991), 543–546 | MR | Zbl

[2] Zhidkov P. E., “An invariant measure for a nonlinear wave equation”, Nonlinear Anal., 22 (1994), 319–325 | DOI | MR | Zbl

[3] Zhidkov P. E., Invariantnaya mera dlya nelineinogo uravneniya Shredingera, Soobsch. OIYaI. R5-94-199, OIYaI, Dubna, 1994

[4] McKean H. P., Vaninsky K. L., “Statistical mechanics of nonlinear wave equations”, Trends and Perspectives in Appl. Math., ed. L. Sirovich, Springer-Verlag, New York, 1994, 239–264 | MR | Zbl

[5] Casati G., Guarneri I., Valz-Griz F., “Preliminaries to the ergodic theory of infinite-dimensional systems: a model of radiant cavity”, J. Statist. Phys., 30:1 (1983), 195–218 | DOI | MR

[6] Bourgain J., “Periodic nonlinear Schrödinger equation and invariant measures”, Comm. Math. Phys., 166 (1994), 1–26 | DOI | MR | Zbl

[7] Zhidkov P. E., “On invariant measures for some infinite-dimensional dynamical systems”, Ann. Inst. H. Poincaré Phys. Théor., 62:3 (1995), 267–287 | MR | Zbl

[8] Arsenev A. A., “Ob invariantnykh merakh dlya klassicheskikh dinamicheskikh sistem s beskonechnomernym fazovym prostranstvom”, Matem. sb., 121 (1983), 297–309 | MR

[9] Chueshov I. D., “Ravnovesnye statisticheskie resheniya dlya dinamicheskikh sistem s beskonechnym chislom stepenei svobody”, Matem. sb., 130 (1986), 394–403 | MR | Zbl

[10] Chueshov I. D., “O strukture ravnovesnykh reshenii dlya klassa dinamicheskikh sistem, svyazannykh so skobkami Puassona”, TMF, 75 (1988), 445–450 | MR

[11] Peskov N. V., “O sostoyanii Kubo–Martina–Shvingera sistemy sinus-Gordon”, TMF, 64:1 (1985), 32–40 | MR | Zbl

[12] Lebowitz J. L., Rose H. A., Speer E. R., “Statistical mechanics of the nonlinear Schrödinger equation”, J. Statist. Phys., 50 (1988), 657–687 | DOI | MR

[13] Friedlander L., “An invariant measure for the equation $u_{tt}-u_{xx}+u^3=0$”, Comm. Math. Phys., 98 (1985), 1–16 | DOI | MR | Zbl

[14] Zaslavskii G. M., Sagdeev R. Z., Vvedenie v nelineinuyu fiziku, Nauka, M., 1988 | MR

[15] Dodd R., Eilbek Dzh., Gibbon Dzh., Morris Kh., Solitony i nelineinye volnovye uravneniya, Mir, M., 1988 | MR

[16] Daletskii Yu. L., Fomin S. V., Mery i differentsialnye uravneniya v beskonechnomernykh prostranstvakh, Nauka, M., 1983 | MR

[17] Skorokhod A. V., Integrirovanie v gilbertovom prostranstve, Nauka, M., 1975

[18] Zhidkov P. E., “O zadache Koshi dlya obobschennogo uravneniya Kortevega–de Friza s periodicheskimi nachalnymi dannymi”, Differents. uravneniya, 26:5 (1990), 823–829 | MR | Zbl

[19] Kato T., “On the Korteweg–de Vries equation”, Manuscripta Math., 28:1–3 (1979), 88–99 | MR

[20] Kato T., “On the Cauchy problem for the (generalized) Korteweg–de Vries equation”, Stud. Math. Appl., 8 (1983), 93–128 | MR | Zbl

[21] Kruzhkov S. N., Faminskii A. V., “Obobschennye resheniya zadachi Koshi dlya uravneniya Kortevega–de Friza”, Matem. sb., 120:3 (1983), 396–425 | MR | Zbl

[22] Faminskii A. V., “Zadacha Koshi dlya uravneniya Kortevega–de Friza i ego obobschenii”, Trudy sem. im. I. G. Petrovskogo, 13, Izd-vo MGU, M., 1988, 56–105

[23] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR

[24] Kruskal M. D., Miura R. M., Gardner C. S., Zubusky N. Z., “Korteweg–de Vries equation and generalizations. V: Uniqueness and nonexistence of polynomial conservation laws”, J. Math. Phys., 11:3 (1970), 952–960 | DOI | MR | Zbl

[25] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, Gos. izd-vo tekhn.-teor. lit., M.–L., 1949

[26] Khalmosh P., Teoriya mery, IL, M., 1953