Invariant measures generated by higher conservation laws for the~Korteweg--de~Vries equations
Sbornik. Mathematics, Tome 187 (1996) no. 6, pp. 803-822

Voir la notice de l'article provenant de la source Math-Net.Ru

The well-posedness of the Cauchy problem that is periodic with respect to the spatial variable is proved for the Korteweg–de Vries equation. For dynamical systems generated by this equation on appropriate phase spaces the invariance of the Borel measures associated with the higher conservation laws is proved.
@article{SM_1996_187_6_a1,
     author = {P. E. Zhidkov},
     title = {Invariant measures generated by higher conservation laws for {the~Korteweg--de~Vries} equations},
     journal = {Sbornik. Mathematics},
     pages = {803--822},
     publisher = {mathdoc},
     volume = {187},
     number = {6},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_6_a1/}
}
TY  - JOUR
AU  - P. E. Zhidkov
TI  - Invariant measures generated by higher conservation laws for the~Korteweg--de~Vries equations
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 803
EP  - 822
VL  - 187
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_6_a1/
LA  - en
ID  - SM_1996_187_6_a1
ER  - 
%0 Journal Article
%A P. E. Zhidkov
%T Invariant measures generated by higher conservation laws for the~Korteweg--de~Vries equations
%J Sbornik. Mathematics
%D 1996
%P 803-822
%V 187
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1996_187_6_a1/
%G en
%F SM_1996_187_6_a1
P. E. Zhidkov. Invariant measures generated by higher conservation laws for the~Korteweg--de~Vries equations. Sbornik. Mathematics, Tome 187 (1996) no. 6, pp. 803-822. http://geodesic.mathdoc.fr/item/SM_1996_187_6_a1/