Invariant measures generated by higher conservation laws for the~Korteweg--de~Vries equations
Sbornik. Mathematics, Tome 187 (1996) no. 6, pp. 803-822
Voir la notice de l'article provenant de la source Math-Net.Ru
The well-posedness of the Cauchy problem that is periodic with respect to the spatial variable is proved for the Korteweg–de Vries equation. For dynamical systems generated by this equation on appropriate phase spaces the invariance of the Borel measures associated with the higher conservation laws is proved.
@article{SM_1996_187_6_a1,
author = {P. E. Zhidkov},
title = {Invariant measures generated by higher conservation laws for {the~Korteweg--de~Vries} equations},
journal = {Sbornik. Mathematics},
pages = {803--822},
publisher = {mathdoc},
volume = {187},
number = {6},
year = {1996},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1996_187_6_a1/}
}
TY - JOUR AU - P. E. Zhidkov TI - Invariant measures generated by higher conservation laws for the~Korteweg--de~Vries equations JO - Sbornik. Mathematics PY - 1996 SP - 803 EP - 822 VL - 187 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1996_187_6_a1/ LA - en ID - SM_1996_187_6_a1 ER -
P. E. Zhidkov. Invariant measures generated by higher conservation laws for the~Korteweg--de~Vries equations. Sbornik. Mathematics, Tome 187 (1996) no. 6, pp. 803-822. http://geodesic.mathdoc.fr/item/SM_1996_187_6_a1/