On the de la Vall\'e-Poussin theorem on the~uniqueness of the~trigonometric series representing a~function
Sbornik. Mathematics, Tome 187 (1996) no. 5, pp. 767-784
Voir la notice de l'article provenant de la source Math-Net.Ru
The de la Vallé-Poussin theorem states that if a trigonometric series converges to a finite integrable function $f$ everywhere outside a countable set $E$, then it is the Fourier series of $f$. In this paper the theorem is shown to hold also if the exceptional set $E$ is a union of finitely many $H$-sets.
@article{SM_1996_187_5_a7,
author = {N. N. Kholshchevnikova},
title = {On the de la {Vall\'e-Poussin} theorem on the~uniqueness of the~trigonometric series representing a~function},
journal = {Sbornik. Mathematics},
pages = {767--784},
publisher = {mathdoc},
volume = {187},
number = {5},
year = {1996},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1996_187_5_a7/}
}
TY - JOUR AU - N. N. Kholshchevnikova TI - On the de la Vall\'e-Poussin theorem on the~uniqueness of the~trigonometric series representing a~function JO - Sbornik. Mathematics PY - 1996 SP - 767 EP - 784 VL - 187 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1996_187_5_a7/ LA - en ID - SM_1996_187_5_a7 ER -
N. N. Kholshchevnikova. On the de la Vall\'e-Poussin theorem on the~uniqueness of the~trigonometric series representing a~function. Sbornik. Mathematics, Tome 187 (1996) no. 5, pp. 767-784. http://geodesic.mathdoc.fr/item/SM_1996_187_5_a7/