On the de la Vallé-Poussin theorem on the uniqueness of the trigonometric series representing a function
Sbornik. Mathematics, Tome 187 (1996) no. 5, pp. 767-784 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The de la Vallé-Poussin theorem states that if a trigonometric series converges to a finite integrable function $f$ everywhere outside a countable set $E$, then it is the Fourier series of $f$. In this paper the theorem is shown to hold also if the exceptional set $E$ is a union of finitely many $H$-sets.
@article{SM_1996_187_5_a7,
     author = {N. N. Kholshchevnikova},
     title = {On the de la {Vall\'e-Poussin} theorem on the~uniqueness of the~trigonometric series representing a~function},
     journal = {Sbornik. Mathematics},
     pages = {767--784},
     year = {1996},
     volume = {187},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_5_a7/}
}
TY  - JOUR
AU  - N. N. Kholshchevnikova
TI  - On the de la Vallé-Poussin theorem on the uniqueness of the trigonometric series representing a function
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 767
EP  - 784
VL  - 187
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_5_a7/
LA  - en
ID  - SM_1996_187_5_a7
ER  - 
%0 Journal Article
%A N. N. Kholshchevnikova
%T On the de la Vallé-Poussin theorem on the uniqueness of the trigonometric series representing a function
%J Sbornik. Mathematics
%D 1996
%P 767-784
%V 187
%N 5
%U http://geodesic.mathdoc.fr/item/SM_1996_187_5_a7/
%G en
%F SM_1996_187_5_a7
N. N. Kholshchevnikova. On the de la Vallé-Poussin theorem on the uniqueness of the trigonometric series representing a function. Sbornik. Mathematics, Tome 187 (1996) no. 5, pp. 767-784. http://geodesic.mathdoc.fr/item/SM_1996_187_5_a7/

[1] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[2] Carlet C., Debs G., “Un résultat sur les ensembles d'unicité du tore”, Semin. d'Init. à l'Analyse, G. Choquet–m. Rogalski–Y. Saint Raymond, 24-éme année, 1984–85 | Zbl

[3] Kholschevnikova N. N., “O summe menshe kontinuuma zamknutykh $U$-mnozhestv”, Vestnik MGU. Ser. matem., mekh., 1981, no. 1, 51–55 | MR

[4] Pyatetskii-Shapiro I. I., “K probleme edinstvennosti razlozheniya funktsii v trigonometricheskii ryad”, Matematika, t. V, Uchenye zapiski MGU, 155, 1952, 54–72

[5] Zigmund A., Trigonometricheskie ryady, T. 1, Mir, M., 1965 | MR

[6] Skvortsov V. A., “O trigonometricheskikh ryadakh, skhodyaschikhsya k neotritsatelnym funktsiyam”, Vestnik MGU. Ser. matem., mekh., 1962, no. 5, 3–10 | Zbl

[7] Kholschevnikova N. N., “K teoreme Valle-Pussena o edinstvennosti predstavleniya”, Mezhdunarodnaya konferentsiya “Funktsionalnye prostranstva, teoriya priblizhenii, nelineinyi analiz”, Tezisy dokladov (aprel–mai 1995 g.), Izd-vo PAIMS, M., 1995, 288