Continuous selections of multivalued maps with non-convex non-closed decomposable values
Sbornik. Mathematics, Tome 187 (1996) no. 5, pp. 745-766 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A class of multivalued maps with non-convex non-closed decomposable values is distinguished, and theorems are proved on the existence of continuous selections for such maps. This class contains multivalued maps whose values are extreme points of continuous multivalued maps with closed convex decomposable values in a Banach space of Bochner-integrable functions. The proofs are based on the Baire category theorem. It is known that the set of extreme points of a closed convex set is in general not closed. Hence the results or paper answer the question of the existence of continuous selections for multivalued maps with non-convex non-closed values.
@article{SM_1996_187_5_a6,
     author = {A. A. Tolstonogov},
     title = {Continuous selections of multivalued maps with non-convex non-closed decomposable values},
     journal = {Sbornik. Mathematics},
     pages = {745--766},
     year = {1996},
     volume = {187},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_5_a6/}
}
TY  - JOUR
AU  - A. A. Tolstonogov
TI  - Continuous selections of multivalued maps with non-convex non-closed decomposable values
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 745
EP  - 766
VL  - 187
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_5_a6/
LA  - en
ID  - SM_1996_187_5_a6
ER  - 
%0 Journal Article
%A A. A. Tolstonogov
%T Continuous selections of multivalued maps with non-convex non-closed decomposable values
%J Sbornik. Mathematics
%D 1996
%P 745-766
%V 187
%N 5
%U http://geodesic.mathdoc.fr/item/SM_1996_187_5_a6/
%G en
%F SM_1996_187_5_a6
A. A. Tolstonogov. Continuous selections of multivalued maps with non-convex non-closed decomposable values. Sbornik. Mathematics, Tome 187 (1996) no. 5, pp. 745-766. http://geodesic.mathdoc.fr/item/SM_1996_187_5_a6/

[1] Antosievicz A., Cellina A., “Continuous selectors and differential relations”, J. Differential Equations, 19:2 (1975), 386–398 | DOI | MR

[2] Fryszkowski A., “Continuous selections for a class of nonconvex multivalued maps”, Studia Math., 76:2 (1983), 163–174 | MR | Zbl

[3] Bressan A., Colombo G., “Extensions and selections of maps with decomposable values”, Studia Math., 90:1 (1988), 69–86 | MR | Zbl

[4] Goncharov V. V., Tolstonogov A. A., “Sovmestnye nepreryvnye selektory mnogoznachnykh otobrazhenii s nevypuklymi znacheniyami i ikh prilozheniya”, Matem. sb., 182:7 (1991), 946–969 | MR

[5] Tolstonogov A. A., “Ekstremalnye selektory mnogoznachnykh otobrazhenii i printsip “beng-beng” dlya evolyutsionnykh vklyuchenii”, DAN SSSR, 317:3 (1991), 589–593 | MR | Zbl

[6] Goncharov V. V., Tolstonogov A. A., “Nepreryvnye selektory semeistva nevypukloznachnykh otobrazhenii s nekompaktnoi oblastyu opredeleniya”, Sib. matem. zhurn., 35:3 (1994), 537–553 | MR | Zbl

[7] Cellina A., “On the differential inclusion $\dot x\in[-1,1]$”, Atti. Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Math. Appl., 69 (1980), 1–6 | MR | Zbl

[8] De Blasi F. S., Piangiani G., “A Baire category approach to the existence of solutions of multivalued differential inclusions in Banach Spaces”, Funkcial. Ekvac., 25:2 (1982), 153–162 | MR | Zbl

[9] De Blasi F. S., Piangiani G., “The Baire category method in existence problem for a class of multivalued differential equations with nonconvex right hand side”, Funkcial. Ekvac., 28:2 (1985), 139–156 | MR | Zbl

[10] De Blasi F. S., Piangiani G., “Differential inclusions in Banach Spaces”, J. Differential Equations, 66 (1987), 208–229 | DOI | MR | Zbl

[11] De Blasi F. S., Piangiani G., “Non-convex valued differential in Banach Spaces”, J. Math. Anal. Appl., 157 (1991), 469–494 | DOI | MR | Zbl

[12] De Blasi F. S., Piangiani G., “On the density of extremal solutions of differential inclusions”, Ann. Polon. Math., 56:2 (1992), 133–142 | MR | Zbl

[13] Chuong P. V., “Un resultat d'existence de solutions pour des equations differentielles multivoques”, C. R. Acad. Sci. Paris Sér. I. Math., 30 (1985), 339–402

[14] Bressan A., “Differential inclusions with non-closed non-convex right-hand side”, Differential Integral Equations, 3 (1990), 633–638 | MR | Zbl

[15] Suslov S. I., “Nelineinyi “beng-beng” printsip v $\mathbb R^n$”, Matem. zametki, 49:5 (1991), 110–116 | MR | Zbl

[16] Suslov S. I., “Nelineinyi “beng-beng” printsip v banakhovom prostranstve”, Sib. matem. zhurn., 33:4 (1992), 142–154 | MR

[17] Burbaki N., Topologicheskie vektornye prostranstva, IL, M., 1959

[18] Edvards R., Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969

[19] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[20] Himmelberg C. J., “Measurable relations”, Fund. Math., 87:1 (1975), 53–72 | MR | Zbl

[21] Hiai F., Umegaki H., “Integrals, conditional expectations and martingales of multivalued functions”, J. Multivariate Anal., 7 (1977), 149–182 | DOI | MR | Zbl

[22] Papageorgiou N. S., “Representation of set-valued operators”, Trans. Amer. Math. Soc., 292:2 (1985), 557–572 | DOI | MR | Zbl

[23] Bourgin R. D., “Geometric Aspects of Convex Sets with the Radon–Nikodym Property”, Lect. Notes in Math., 993, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1983 | MR | Zbl

[24] De Blasi F. S., Piangiani G., “Remarks on Hausdorff continuous multifunctions and selections”, Comment. Math. Univ. Carolin., 24:3 (1983), 553–561 | MR | Zbl

[25] Kelli Dzh. L., Obschaya topologiya, Nauka, M., 1981

[26] Kuratovskii K., Topologiya, T. 1, Mir, M., 1966 | MR