Asymptotic behaviour as $t\to \infty$ of the solutions of the generalized Korteweg–de Vries equation
Sbornik. Mathematics, Tome 187 (1996) no. 5, pp. 693-733 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Asymptotic formulae representing for large time the solution of the Cauchy problem are obtained for the generalized Korteweg–de Vries equation with non-linear term to an integer power greater than three. The error terms are estimated. The method is based on the perturbation theory with respect to a parameter characterizing the smallness of the initial data.
@article{SM_1996_187_5_a4,
     author = {P. I. Naumkin and I. A. Shishmarev},
     title = {Asymptotic behaviour as $t\to \infty$ of the~solutions of the~generalized {Korteweg{\textendash}de~Vries} equation},
     journal = {Sbornik. Mathematics},
     pages = {693--733},
     year = {1996},
     volume = {187},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_5_a4/}
}
TY  - JOUR
AU  - P. I. Naumkin
AU  - I. A. Shishmarev
TI  - Asymptotic behaviour as $t\to \infty$ of the solutions of the generalized Korteweg–de Vries equation
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 693
EP  - 733
VL  - 187
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_5_a4/
LA  - en
ID  - SM_1996_187_5_a4
ER  - 
%0 Journal Article
%A P. I. Naumkin
%A I. A. Shishmarev
%T Asymptotic behaviour as $t\to \infty$ of the solutions of the generalized Korteweg–de Vries equation
%J Sbornik. Mathematics
%D 1996
%P 693-733
%V 187
%N 5
%U http://geodesic.mathdoc.fr/item/SM_1996_187_5_a4/
%G en
%F SM_1996_187_5_a4
P. I. Naumkin; I. A. Shishmarev. Asymptotic behaviour as $t\to \infty$ of the solutions of the generalized Korteweg–de Vries equation. Sbornik. Mathematics, Tome 187 (1996) no. 5, pp. 693-733. http://geodesic.mathdoc.fr/item/SM_1996_187_5_a4/

[1] Dodd R., Eilbek Dzh., Gibbon Dzh., Moris Kh., Solitony i nelineinye volnovye uravneniya, Mir, M., 1988 | MR

[2] Gimbre J., Tsutsumi Y., “Uniqueness for the generalized Korteweg–de Vries equation”, SIAM J. Math. Anal., 20 (1989), 1388–1425 | DOI | MR

[3] Kato T., “On the Cauchy problem for the (generalized) Korteweg–de Vries equation”, Stud. Appl. Math., Advances Math. Suppl. Stud., 8, Acad. Press, Fl, 1983 | MR

[4] Kruzhkov S. N., Faminskii A. V., “Obobschennye resheniya dlya uravneniya KdF”, Matem. sb., 120 (162):3 (1983), 396–425 | MR | Zbl

[5] Sidi A., Sulem C., Sulem P., “On the long-time behavior of a generalized KdV equation”, Acta Math. Appl., 7 (1986), 35–48 | DOI | MR

[6] Craig W., Kappeler T., Strauss W. A., “Gain of regularity for equations of KdV type”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (1992), 147–186 | MR | Zbl

[7] Kappeler T., “Solutions to the Korteweg–de Vries equation with irregular initial data”, Comm. Partial Differential Equations, 11 (1986), 927–945 | DOI | MR | Zbl

[8] Bona J. L., Saut J. C., “Dispersive blow-up of solutions of generalized Korteweg–de Vries equation”, J. Differential Equations, 103:1 (1993), 3–57 | DOI | MR | Zbl

[9] Albert J. P., Bona J. L., Felland M., “A criterion for the formation of singularities for the generalized Korteweg–de Vries tquation”, Mat. Apl. Comput., 7 (1988), 3–11 | MR | Zbl

[10] Ablovits M., Sigur Kh., Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR

[11] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR

[12] Strauss W. A., “Nonlinear scattering theory at low energy”, J. Funct. Anal., 41 (1981), 110–133 | DOI | MR | Zbl

[13] Ponce G., Vega L., “Nonlinear small data scattering for the generalized Korteweg–de Vries equation”, J. Funct. Anal., 90:2 (1990), 445–457 | DOI | MR | Zbl

[14] Christ F. M., Weinstein M. I., “Dispersion of small amplitude solutions of teh generalized Korteweg–de Vries equation”, J. Funct. Anal., 100:1 (1991), 87–109 | DOI | MR | Zbl

[15] Naumkin P. I., Shishmarev I. A., “Asimptotika pri $t\to\infty$ reshenii obobschennogo uravneniya Kolmogorova–Petrovskogo–Piskunova”, Matem. modelirovanie, 1:6 (1989), 109–125 | MR | Zbl

[16] Naumkin P. I., Shishmarev I. A., “Asimptotika reshenii uravneniya Uizema pri bolshikh vremenakh”, Matem. modelirovanie, 2:3 (1990), 75–88 | MR | Zbl

[17] Naumkin P. I., Shishmarev I. A., Nonlinear nonlocal equations in the theory of waves, Translation of Monographs AMS, Providence, 1994

[18] Olver F., Asimptotika i spetsialnye funktsii, Nauka, M., 1990 | MR | Zbl

[19] Fedoryuk M. V., Asimptotika: Integraly i ryady, Nauka, M., 1987 | MR