Asymptotic behaviour as $t\to \infty$ of the~solutions of the~generalized Korteweg--de~Vries equation
Sbornik. Mathematics, Tome 187 (1996) no. 5, pp. 693-733

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotic formulae representing for large time the solution of the Cauchy problem are obtained for the generalized Korteweg–de Vries equation with non-linear term to an integer power greater than three. The error terms are estimated. The method is based on the perturbation theory with respect to a parameter characterizing the smallness of the initial data.
@article{SM_1996_187_5_a4,
     author = {P. I. Naumkin and I. A. Shishmarev},
     title = {Asymptotic behaviour as $t\to \infty$ of the~solutions of the~generalized {Korteweg--de~Vries} equation},
     journal = {Sbornik. Mathematics},
     pages = {693--733},
     publisher = {mathdoc},
     volume = {187},
     number = {5},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_5_a4/}
}
TY  - JOUR
AU  - P. I. Naumkin
AU  - I. A. Shishmarev
TI  - Asymptotic behaviour as $t\to \infty$ of the~solutions of the~generalized Korteweg--de~Vries equation
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 693
EP  - 733
VL  - 187
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_5_a4/
LA  - en
ID  - SM_1996_187_5_a4
ER  - 
%0 Journal Article
%A P. I. Naumkin
%A I. A. Shishmarev
%T Asymptotic behaviour as $t\to \infty$ of the~solutions of the~generalized Korteweg--de~Vries equation
%J Sbornik. Mathematics
%D 1996
%P 693-733
%V 187
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1996_187_5_a4/
%G en
%F SM_1996_187_5_a4
P. I. Naumkin; I. A. Shishmarev. Asymptotic behaviour as $t\to \infty$ of the~solutions of the~generalized Korteweg--de~Vries equation. Sbornik. Mathematics, Tome 187 (1996) no. 5, pp. 693-733. http://geodesic.mathdoc.fr/item/SM_1996_187_5_a4/