Asymptotic behaviour as $t\to \infty$ of the~solutions of the~generalized Korteweg--de~Vries equation
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 187 (1996) no. 5, pp. 693-733
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Asymptotic formulae representing for large time the solution of the Cauchy problem are obtained for the generalized Korteweg–de Vries equation with non-linear term to an integer power greater than three. The error terms are estimated. The method is based on the perturbation theory with respect to a parameter characterizing the smallness of the initial data.
			
            
            
            
          
        
      @article{SM_1996_187_5_a4,
     author = {P. I. Naumkin and I. A. Shishmarev},
     title = {Asymptotic behaviour as $t\to \infty$ of the~solutions of the~generalized {Korteweg--de~Vries} equation},
     journal = {Sbornik. Mathematics},
     pages = {693--733},
     publisher = {mathdoc},
     volume = {187},
     number = {5},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_5_a4/}
}
                      
                      
                    TY - JOUR AU - P. I. Naumkin AU - I. A. Shishmarev TI - Asymptotic behaviour as $t\to \infty$ of the~solutions of the~generalized Korteweg--de~Vries equation JO - Sbornik. Mathematics PY - 1996 SP - 693 EP - 733 VL - 187 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1996_187_5_a4/ LA - en ID - SM_1996_187_5_a4 ER -
%0 Journal Article %A P. I. Naumkin %A I. A. Shishmarev %T Asymptotic behaviour as $t\to \infty$ of the~solutions of the~generalized Korteweg--de~Vries equation %J Sbornik. Mathematics %D 1996 %P 693-733 %V 187 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1996_187_5_a4/ %G en %F SM_1996_187_5_a4
P. I. Naumkin; I. A. Shishmarev. Asymptotic behaviour as $t\to \infty$ of the~solutions of the~generalized Korteweg--de~Vries equation. Sbornik. Mathematics, Tome 187 (1996) no. 5, pp. 693-733. http://geodesic.mathdoc.fr/item/SM_1996_187_5_a4/
