Dimension subgroups of extensions with an Abelian kernel
Sbornik. Mathematics, Tome 187 (1996) no. 5, pp. 685-691 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is known that the dimension subgroup problem can be solved affirmatively in the class of groups whose lower central series quotients are torsion-free. In this paper it is proved that the same result is true for an arbitrary extension of a group belonging to this class by an Abelian group.
@article{SM_1996_187_5_a3,
     author = {Yu. V. Kuz'min},
     title = {Dimension subgroups of extensions with {an~Abelian} kernel},
     journal = {Sbornik. Mathematics},
     pages = {685--691},
     year = {1996},
     volume = {187},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_5_a3/}
}
TY  - JOUR
AU  - Yu. V. Kuz'min
TI  - Dimension subgroups of extensions with an Abelian kernel
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 685
EP  - 691
VL  - 187
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_5_a3/
LA  - en
ID  - SM_1996_187_5_a3
ER  - 
%0 Journal Article
%A Yu. V. Kuz'min
%T Dimension subgroups of extensions with an Abelian kernel
%J Sbornik. Mathematics
%D 1996
%P 685-691
%V 187
%N 5
%U http://geodesic.mathdoc.fr/item/SM_1996_187_5_a3/
%G en
%F SM_1996_187_5_a3
Yu. V. Kuz'min. Dimension subgroups of extensions with an Abelian kernel. Sbornik. Mathematics, Tome 187 (1996) no. 5, pp. 685-691. http://geodesic.mathdoc.fr/item/SM_1996_187_5_a3/

[1] Rips E., “On the forth integer dimension subgroup”, Israel J. Math., 12 (1972), 342–346 | DOI | MR | Zbl

[2] Gupta N., “The dimension subgroup conjecture”, Bull. London Math. Soc., 22 (1990), 453–456 | DOI | MR | Zbl

[3] Maltsev A. I., “Obobschenno nilpotentnye algebry i ikh prisoedinennye gruppy”, Matem. sb., 25 (1949), 347–366 | MR | Zbl

[4] Jennings S. A., “The group ring of a class of infinite nilpotent groups”, Canad. J. Math., 7 (1955), 169–187 | MR | Zbl

[5] Hall P., “Nilpotent roups”, Letures given at Canadian Congress Summer Seminar, Univ. of Alberta, 1957

[6] Sandlings R., “The dimension subgroup problem”, J. Algebra, 21 (1972), 216–231 | DOI | MR

[7] Quillen D., “On the associated graded ring of a group ring”, J. Algebra, 10 (1968), 411–418 | DOI | MR | Zbl

[8] Grun O., “Über die Faktorgruppen freier Gruppen, 1”, Deutsche Math., 1:6 (1936), 772–782

[9] Magnus W., “Über beziehungen zwischen hoheren Kommutatoren”, J. Reine Angew. Math., 177 (1937), 105–115 | Zbl

[10] Hartley B., “The residual nilpotence of wreath products”, Proc. London Math. Soc., (3) 20 (1970), 365–392 | DOI | MR | Zbl

[11] Shmelkin A. L., “Spleteniya algebr Li i ikh prilozheniya k teorii grupp”, Tr. MMO, 29, URSS, M., 1973, 247–260 | MR | Zbl

[12] Eidelkind D. I., “O gruppakh Magnusa”, Matem. sb., 92 (1973), 209–223 | MR | Zbl

[13] Bakhturin Yu. A., Tozhdestva v algebrakh Li, Nauka, M., 1985 | MR | Zbl

[14] Neiman Kh., Mnogoobraziya grupp, Mir, M., 1969 | MR

[15] Shmelkin A. L., “Svobodnye polinilpotentnye gruppy”, Izv. AN SSSR. Ser. matem., 28 (1964), 91–122 | MR | Zbl

[16] Gupta K. C., Levin F., “Dimension subgroups of free center-by-metabelian groups”, Illinois J. Math., 30 (1986), 258–273 | MR | Zbl

[17] Kuzmin Yu. V., “Elementy poryadka $2$ v svobodnoi tsentralno-razreshimoi gruppe”, Matem. zametki, 37 (1985), 643–652 | MR | Zbl

[18] Kuzmin Yu. V., “Ob elementakh konechnogo poryadka v svobodnykh gruppakh nekotorykh mnogoobrazii”, Matem. sb., 119 (1982), 119–131 | MR | Zbl

[19] Kuzmin Yu. V., “Homology theory of free abelianized extensions”, Comm. Algebra, 16 (1988), 2447–2533 | DOI | MR | Zbl