@article{SM_1996_187_5_a2,
author = {V. V. Kozlov and V. V. Ten},
title = {Topology of domains of possible motions of integrable systems},
journal = {Sbornik. Mathematics},
pages = {679--684},
year = {1996},
volume = {187},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1996_187_5_a2/}
}
V. V. Kozlov; V. V. Ten. Topology of domains of possible motions of integrable systems. Sbornik. Mathematics, Tome 187 (1996) no. 5, pp. 679-684. http://geodesic.mathdoc.fr/item/SM_1996_187_5_a2/
[1] Kozlov V. V., “Variatsionnoe ischislenie v tselom i klassicheskaya mekhanika”, UMN, 40:2 (1985), 33–60 | MR | Zbl
[2] Kozlov V. V., “Topologicheskie prepyatstviya k integriruemosti naturalnykh mekhanicheskikh sistem”, DAN SSSR, 249:6 (1979), 1299–1302 | MR | Zbl
[3] Kolokoltsov V. N., “Geodezicheskie potoki na dvumernykh mnogoobraziyakh s dopolnitelnym po skorosti pervym integralom”, Izv. AN SSSR. Ser. matem., 46:5 (1982), 994–1010 | MR | Zbl
[4] Taimanov I. A., “Topologicheskie prepyatstviya k integriruemosti geodezicheskikh potokov na neodnosvyaznykh mnogoobraziyakh”, Izv. AN SSSR. Ser. matem., 51:2 (1987), 429–435 | MR
[5] Bolotin S. V., “Dvoyakoasimptoticheskie traektorii minimalnykh geodezicheskikh”, Vestn. MGU. Ser. 1. Matem., mekh., 1992, no. 1, 92–96 | MR
[6] Paternain G. P., “On the topology of manifolds with completely integrable geodesic flows”, Ergod. Th. and Dynam. Sys., 12 (1992), 109–121 | DOI | MR
[7] Bolotin S. V., “Neintegriruemost zadachi $n$ tsentrov pri $n>2$”, Vestn. MGU. Ser. 1. Matem., mekh., 1984, no. 3, 65–68 | MR
[8] Kozlov V. V., “Integriruemost i neintegriruemost v gamiltonovoi mekhanike”, UMN, 38:1 (1983), 3–67 | MR | Zbl
[9] Abrarov D. L., “Topologicheskie prepyatstviya k suschestvovaniyu uslovno-lineinykh integralov”, Vestn. MGU. Ser. 1. Matem., mekh., 1984, no. 6, 72–75 | MR | Zbl
[10] Bolotin S. V., “O pervykh integralakh sistem s giroskopicheskimi silami”, Vestn. MGU. Ser. 1. Matem., mekh., 1984, no. 6, 75–82 | MR | Zbl