Averaging principle for dissipative dynamical systems with rapidly oscillating right-hand sides
Sbornik. Mathematics, Tome 187 (1996) no. 5, pp. 635-677

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider two-dimensional Navier–Stokes equations and a damped non-linear hyperbolic equation. We suppose that the right-hand sides of these equations have the form $f(\omega t)$, $\omega \gg 1$. We suppose also that $f$ has an average. The main result of the paper is proof of a global averaging theorem on the convergence of attractors of non-autonomous equations to the attractor of the average autonomous equation as $\omega \to \infty$.
@article{SM_1996_187_5_a1,
     author = {A. A. Ilyin},
     title = {Averaging principle for dissipative dynamical systems with rapidly oscillating right-hand sides},
     journal = {Sbornik. Mathematics},
     pages = {635--677},
     publisher = {mathdoc},
     volume = {187},
     number = {5},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_5_a1/}
}
TY  - JOUR
AU  - A. A. Ilyin
TI  - Averaging principle for dissipative dynamical systems with rapidly oscillating right-hand sides
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 635
EP  - 677
VL  - 187
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_5_a1/
LA  - en
ID  - SM_1996_187_5_a1
ER  - 
%0 Journal Article
%A A. A. Ilyin
%T Averaging principle for dissipative dynamical systems with rapidly oscillating right-hand sides
%J Sbornik. Mathematics
%D 1996
%P 635-677
%V 187
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1996_187_5_a1/
%G en
%F SM_1996_187_5_a1
A. A. Ilyin. Averaging principle for dissipative dynamical systems with rapidly oscillating right-hand sides. Sbornik. Mathematics, Tome 187 (1996) no. 5, pp. 635-677. http://geodesic.mathdoc.fr/item/SM_1996_187_5_a1/