Averaging principle for dissipative dynamical systems with rapidly oscillating right-hand sides
Sbornik. Mathematics, Tome 187 (1996) no. 5, pp. 635-677 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider two-dimensional Navier–Stokes equations and a damped non-linear hyperbolic equation. We suppose that the right-hand sides of these equations have the form $f(\omega t)$, $\omega \gg 1$. We suppose also that $f$ has an average. The main result of the paper is proof of a global averaging theorem on the convergence of attractors of non-autonomous equations to the attractor of the average autonomous equation as $\omega \to \infty$.
@article{SM_1996_187_5_a1,
     author = {A. A. Ilyin},
     title = {Averaging principle for dissipative dynamical systems with rapidly oscillating right-hand sides},
     journal = {Sbornik. Mathematics},
     pages = {635--677},
     year = {1996},
     volume = {187},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_5_a1/}
}
TY  - JOUR
AU  - A. A. Ilyin
TI  - Averaging principle for dissipative dynamical systems with rapidly oscillating right-hand sides
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 635
EP  - 677
VL  - 187
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_5_a1/
LA  - en
ID  - SM_1996_187_5_a1
ER  - 
%0 Journal Article
%A A. A. Ilyin
%T Averaging principle for dissipative dynamical systems with rapidly oscillating right-hand sides
%J Sbornik. Mathematics
%D 1996
%P 635-677
%V 187
%N 5
%U http://geodesic.mathdoc.fr/item/SM_1996_187_5_a1/
%G en
%F SM_1996_187_5_a1
A. A. Ilyin. Averaging principle for dissipative dynamical systems with rapidly oscillating right-hand sides. Sbornik. Mathematics, Tome 187 (1996) no. 5, pp. 635-677. http://geodesic.mathdoc.fr/item/SM_1996_187_5_a1/

[1] Bogolyubov N. N., O nekotorykh statisticheskikh metodakh v matematicheskoi fizike, Izd-vo AN USSR, Kiev, 1945

[2] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Fizmatgiz, M., 1963 | MR

[3] Mitropolskii Yu. A., Metod usredneniya v nelineinoi mekhanike, Naukova dumka, Kiev, 1971 | MR

[4] Filatov A. N., Asimptoticheskie metody v teorii differentsialnykh i integrodifferentsialnykh uravnenii, Fan, Tashkent, 1974 | MR

[5] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR

[6] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR

[7] Levitan B. M., Zhikov V. V., Pochti periodicheskie funktsii i differentsialnye uravneniya, Izd-vo MGU, M., 1978 | MR | Zbl

[8] Simonenko I. B., “Obosnovanie metoda usredneniya dlya abstraktnykh parabolicheskikh uravnenii”, Matem. sb., 81 (123):1 (1970), 53–61 | MR | Zbl

[9] Babin A. V., Vishik M. I., Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl

[10] Hale J. K., “Asymptotic behavior and dynamics in infinite dimensions”, Res. Notes Math., 1985, no. 132, 1–42 | MR | Zbl

[11] Haraux A., Systèmes dynamiques dissipatifs et applications, Masson, Paris, 1991 | MR | Zbl

[12] Ladyzhenskaya O. A., “Ob attraktorakh nelineinykh evolyutsionnykh zadach s dissipatsiei”, Zapiski nauch. sem. LOMI, 152, Nauka, L., 1986, 72–85 | Zbl

[13] Ladyzhenskaya O. A., “O nakhozhdenii minimalnykh globalnykh attraktorov dlya uravnenii Nave–Stoksa i drugikh uravnenii s chastnymi proizvodnymi”, UMN, 42:6 (1987), 25–60 | MR | Zbl

[14] Temam R., Infinite dimensional dynamical systems in mechanics and physics, Springer-Verlag, New York, 1988 | MR | Zbl

[15] Haraux A., “Attractors of asymptotically compact processes and applications to nonlinear partial differential equations”, Comm. Partial Differential Equations, 13 (1988), 1383–1414 | DOI | MR | Zbl

[16] Haraux A., Systèmes dynamiques dissipatifs et applications, Masson, Paris, 1991 | MR | Zbl

[17] Chepyzhov V. V., Vishik M. I., “Nonautonomous dynamical systems and their attractors. (Appendix)”, Asymptotic behaviour of solutions of evolutionary equations, ed. M. I. Vishik, Cambridge Univ. Press, Cambridge, 1992

[18] Chepyzhov V. V., Vishik M. I., “A Hausdorff dimension estimate for kernel sections of nonautonomous evolution equations”, Indiana Univ. Math. J., 42 (1993), 1057–1076 | DOI | MR | Zbl

[19] Chepyzhov V. V., Vishik M. I., “Attractors of non-autonomous dynamical systems and their dimension”, J. Math. Pures Appl. (9), 73 (1994), 279–333 | MR | Zbl

[20] Sell G. R., “Nonautonomous differential equations and topological dynamics. I; II”, Trans. Amer. Math. Soc., 127 (1967), 241–262 ; 263–284 | DOI | MR | Zbl

[21] Zhikov V. V., “Ob ustoichivosti i neustoichivosti tsentra Levinsona”, Differents. uravneniya, 8 (1972), 2167–2170 | MR

[22] Zhikov V. V., “Nekotorye voprosy dopustimosti i dikhotomii. Printsip usredneniya”, Izv. AN SSSR. Ser. matem., 40:6 (1976), 1380–1408 | MR | Zbl

[23] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[24] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl

[25] Weinstein M., “Nonlinear Schrödinger equatioins and sharp interpolation estimates”, Comm. Math. Phys., 87 (1983), 567–576 | DOI | MR | Zbl

[26] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR

[27] Ilyin A. A., “Attractors for Navier–Stokes equations in domains with finite measure”, Nonlinear Anal., 26:6 (1996) | MR

[28] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[29] Ilin A. A., “Chastichno dissipativnye polugruppy, porozhdaemye sistemoi Nave–Stoksa na dvumernykh mnogoobraziyakh, i ikh attraktory”, Matem. sb., 184:1 (1993), 55–88 | Zbl