Existence of the~best possible uniform approximation of a~function of several variables by a~sum of functions of fewer variables
Sbornik. Mathematics, Tome 187 (1996) no. 5, pp. 623-634

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\varphi_i$ be some maps of a set $X$ onto sets $i=1,\dots,n$, $n\geqslant 2$. Approximations of real function $f$ on $X$ by sums $g_1\circ \varphi _1+\dots +g_n\circ \varphi _n$ are considered, where the $g_i$ are real function on $X_i$. Under certain constraints on the $\varphi_i$ the existence of the best possible approximation is proved in three cases. In the first case the function $f$ and the approximating sums are bounded, but the functions $\varphi_i$ can be unbounded. In the second case $f$ and the $g_i$ are bounded. In the third case $f$ and the $g_i$ are continuous, $X$ and the $X_i$ are compact sets with metrics, and the maps $\varphi_i$ are continuous.
@article{SM_1996_187_5_a0,
     author = {A. L. Garkavi and V. A. Medvedev and S. Ya. Havinson},
     title = {Existence of the~best possible uniform approximation of a~function of several variables by a~sum of functions of fewer variables},
     journal = {Sbornik. Mathematics},
     pages = {623--634},
     publisher = {mathdoc},
     volume = {187},
     number = {5},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_5_a0/}
}
TY  - JOUR
AU  - A. L. Garkavi
AU  - V. A. Medvedev
AU  - S. Ya. Havinson
TI  - Existence of the~best possible uniform approximation of a~function of several variables by a~sum of functions of fewer variables
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 623
EP  - 634
VL  - 187
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_5_a0/
LA  - en
ID  - SM_1996_187_5_a0
ER  - 
%0 Journal Article
%A A. L. Garkavi
%A V. A. Medvedev
%A S. Ya. Havinson
%T Existence of the~best possible uniform approximation of a~function of several variables by a~sum of functions of fewer variables
%J Sbornik. Mathematics
%D 1996
%P 623-634
%V 187
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1996_187_5_a0/
%G en
%F SM_1996_187_5_a0
A. L. Garkavi; V. A. Medvedev; S. Ya. Havinson. Existence of the~best possible uniform approximation of a~function of several variables by a~sum of functions of fewer variables. Sbornik. Mathematics, Tome 187 (1996) no. 5, pp. 623-634. http://geodesic.mathdoc.fr/item/SM_1996_187_5_a0/