Existence of the~best possible uniform approximation of a~function of several variables by a~sum of functions of fewer variables
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 187 (1996) no. 5, pp. 623-634
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\varphi_i$ be some maps of a set $X$ onto sets $i=1,\dots,n$, $n\geqslant 2$. Approximations of real function $f$ on $X$ by sums $g_1\circ \varphi _1+\dots +g_n\circ \varphi _n$ are considered, where the $g_i$ are real function on $X_i$. Under certain constraints on the $\varphi_i$ the existence of the best possible approximation is proved in three cases. In the first case the function $f$ and the approximating sums are bounded, but the functions $\varphi_i$ can be unbounded. In the second case $f$ and the $g_i$ are bounded. In the third case $f$ and the $g_i$ are continuous, $X$ and the $X_i$ are compact sets with metrics, and the maps $\varphi_i$ are continuous.
			
            
            
            
          
        
      @article{SM_1996_187_5_a0,
     author = {A. L. Garkavi and V. A. Medvedev and S. Ya. Havinson},
     title = {Existence of the~best possible uniform approximation of a~function of several variables by a~sum of functions of fewer variables},
     journal = {Sbornik. Mathematics},
     pages = {623--634},
     publisher = {mathdoc},
     volume = {187},
     number = {5},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_5_a0/}
}
                      
                      
                    TY - JOUR AU - A. L. Garkavi AU - V. A. Medvedev AU - S. Ya. Havinson TI - Existence of the~best possible uniform approximation of a~function of several variables by a~sum of functions of fewer variables JO - Sbornik. Mathematics PY - 1996 SP - 623 EP - 634 VL - 187 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1996_187_5_a0/ LA - en ID - SM_1996_187_5_a0 ER -
%0 Journal Article %A A. L. Garkavi %A V. A. Medvedev %A S. Ya. Havinson %T Existence of the~best possible uniform approximation of a~function of several variables by a~sum of functions of fewer variables %J Sbornik. Mathematics %D 1996 %P 623-634 %V 187 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1996_187_5_a0/ %G en %F SM_1996_187_5_a0
A. L. Garkavi; V. A. Medvedev; S. Ya. Havinson. Existence of the~best possible uniform approximation of a~function of several variables by a~sum of functions of fewer variables. Sbornik. Mathematics, Tome 187 (1996) no. 5, pp. 623-634. http://geodesic.mathdoc.fr/item/SM_1996_187_5_a0/
