Existence of the best possible uniform approximation of a function of several variables by a sum of functions of fewer variables
Sbornik. Mathematics, Tome 187 (1996) no. 5, pp. 623-634 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\varphi_i$ be some maps of a set $X$ onto sets $i=1,\dots,n$, $n\geqslant 2$. Approximations of real function $f$ on $X$ by sums $g_1\circ \varphi _1+\dots +g_n\circ \varphi _n$ are considered, where the $g_i$ are real function on $X_i$. Under certain constraints on the $\varphi_i$ the existence of the best possible approximation is proved in three cases. In the first case the function $f$ and the approximating sums are bounded, but the functions $\varphi_i$ can be unbounded. In the second case $f$ and the $g_i$ are bounded. In the third case $f$ and the $g_i$ are continuous, $X$ and the $X_i$ are compact sets with metrics, and the maps $\varphi_i$ are continuous.
@article{SM_1996_187_5_a0,
     author = {A. L. Garkavi and V. A. Medvedev and S. Ya. Havinson},
     title = {Existence of the~best possible uniform approximation of a~function of several variables by a~sum of functions of fewer variables},
     journal = {Sbornik. Mathematics},
     pages = {623--634},
     year = {1996},
     volume = {187},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_5_a0/}
}
TY  - JOUR
AU  - A. L. Garkavi
AU  - V. A. Medvedev
AU  - S. Ya. Havinson
TI  - Existence of the best possible uniform approximation of a function of several variables by a sum of functions of fewer variables
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 623
EP  - 634
VL  - 187
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_5_a0/
LA  - en
ID  - SM_1996_187_5_a0
ER  - 
%0 Journal Article
%A A. L. Garkavi
%A V. A. Medvedev
%A S. Ya. Havinson
%T Existence of the best possible uniform approximation of a function of several variables by a sum of functions of fewer variables
%J Sbornik. Mathematics
%D 1996
%P 623-634
%V 187
%N 5
%U http://geodesic.mathdoc.fr/item/SM_1996_187_5_a0/
%G en
%F SM_1996_187_5_a0
A. L. Garkavi; V. A. Medvedev; S. Ya. Havinson. Existence of the best possible uniform approximation of a function of several variables by a sum of functions of fewer variables. Sbornik. Mathematics, Tome 187 (1996) no. 5, pp. 623-634. http://geodesic.mathdoc.fr/item/SM_1996_187_5_a0/

[1] Diliberto S. P., Straus E. G., “On the approximation of a function of several variables by the sum of functions of fewer variables”, Pacif. J. Math., 1:1 (1951), 195–210 | MR | Zbl

[2] Aumann G., “Approximation by step functions”, Proc. Amer. Math. Soc., 14:3 (1963), 477–482 | DOI | MR | Zbl

[3] Medvedev V. A., “Oproverzhenie odnoi teoremy Diliberto i Strausa”, Matem. zametki, 51:4 (1992), 78–80 | MR | Zbl

[4] Ofman Yu. P., “O nailuchshem priblizhenii funktsii dvukh peremennykh funktsiyami vida $\varphi(x)+\psi(y)$”, Izv. AN SSSR. Ser. matem., 25:2 (1961), 239–252 | MR | Zbl

[5] Motornyi V. P., “K voprosu o nailuchshem priblizhenii funktsii dvukh peremennykh funktsiyami vida $\varphi(x)+\psi(y)$”, Izv. AN SSSR. Ser. matem., 27:6 (1963), 1211–1214 | MR | Zbl

[6] Motornyi V. P., “K voprosu o nailuchshem priblizhenii funktsii dvukh peremennykh funktsiyami vida $\varphi(x)+\psi(y)$”, Issledovaniya po sovremennym problemam konstruktivnoi teorii funktsii, AN Az. SSR, Baku, 1965, 66–72 | MR

[7] Khavinson S. Ya., “Chebyshevskaya teorema dlya priblizheniya funktsii dvukh peremennykh summami $\varphi(x)+\psi(y)$”, Izv. AN SSSR. Ser. matem., 33:3 (1969), 650–666 | MR | Zbl

[8] Khavinson S. Ya., “O predstavlenii i priblizhenii funktsii dvukh peremennykh lineinymi superpozitsiyami”, Voprosy matematiki, mekhaniki sploshnykh sred i primeneniya matematicheskikh metodov v stroitelstve, MISI, M., 1987, 89–92

[9] Arnold V. I., “O funktsiyakh trekh peremennykh”, DAN SSSR, 114:4 (1957), 679–681 | MR

[10] Dei M. M., Lineinye normirovannye prostranstva, IL, M., 1961

[11] Katetov M., “On real functions in topological spaces”, Fund. Math., 38 (1951), 85–91 | MR | Zbl