Mixed problems with non-homogeneous boundary conditions in Lipschitz domains for second-order elliptic equations with a parameter
Sbornik. Mathematics, Tome 187 (1996) no. 4, pp. 525-580 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a second-order elliptic equation involving a parameter, with principal part in divergence form in Lipschitz domain $\Omega$ mixed problems (of Zaremba type) with non-homogeneous boundary conditions are considered for generalized functions in $W^1_2(\Omega )$. The Poincaré–Steklov operators on Lipschitz piece $\gamma$ of the domain's boundary $\Gamma$ corresponding to homogeneous mixed boundary conditions on $\Gamma \setminus \gamma$ are studied. For a homogeneous equation with separation of variables in a tube domain with Lipschitz section, the Fourier method is substantiated for homogeneous mixed boundary conditions on the lateral surface and non-homogeneous conditions on the ends.
@article{SM_1996_187_4_a2,
     author = {B. V. Pal'tsev},
     title = {Mixed problems with non-homogeneous boundary conditions in {Lipschitz} domains for second-order elliptic equations with a~parameter},
     journal = {Sbornik. Mathematics},
     pages = {525--580},
     year = {1996},
     volume = {187},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_4_a2/}
}
TY  - JOUR
AU  - B. V. Pal'tsev
TI  - Mixed problems with non-homogeneous boundary conditions in Lipschitz domains for second-order elliptic equations with a parameter
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 525
EP  - 580
VL  - 187
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_4_a2/
LA  - en
ID  - SM_1996_187_4_a2
ER  - 
%0 Journal Article
%A B. V. Pal'tsev
%T Mixed problems with non-homogeneous boundary conditions in Lipschitz domains for second-order elliptic equations with a parameter
%J Sbornik. Mathematics
%D 1996
%P 525-580
%V 187
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1996_187_4_a2/
%G en
%F SM_1996_187_4_a2
B. V. Pal'tsev. Mixed problems with non-homogeneous boundary conditions in Lipschitz domains for second-order elliptic equations with a parameter. Sbornik. Mathematics, Tome 187 (1996) no. 4, pp. 525-580. http://geodesic.mathdoc.fr/item/SM_1996_187_4_a2/

[1] Agmon Sh., Duglis A., Nirenberg L., Otsenki reshenii ellipticheskikh uravnenii vblizi granitsy, IL, M., 1962

[2] Schechter M., “General boundary value problems for elliptic equations”, Comm. Pure and Appl. Math., 12 (1959), 457–486 | DOI | MR | Zbl

[3] Peetre J., “Another approach to elliptic boundary problems”, Comm. Pure and Appl. Math., 14 (1961), 711–731 | DOI | MR | Zbl

[4] Agranovich M. S., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, UMN, 19:3 (1964), 53–161

[5] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[6] Roitberg Ya. A., “Ellipticheskie zadachi s neodnorodnymi granichnymi usloviyami i lokalnoe povyshenie gladkosti vplot do granitsy obobschennykh reshenii”, DAN SSSR, 157:4 (1964), 798–801 | MR | Zbl

[7] Nečas J., Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 1967 | MR

[8] Kondratev V. A., Oleinik O. A., “Kraevye zadachi dlya uravnenii s chastnymi proizvodnymi v negladkikh oblastyakh”, UMN, 38:2 (1983), 3–76 | MR | Zbl

[9] Crisvard P., Elliptic problems in nonsmooth domains, Pittman, London, 1985

[10] Zaremba S., “Sur un problème mixte relatif à l'equation de Laplace”, Bull. Acad. Sci. Cracovie. Classe des sciences mathématiques et naturelles. Ser A, 1910, 313–344 | Zbl

[11] Schechter M., “Mixed boundary problem for general elliptic equations”, Comm. Pure and Appl. Math., 13 (1960), 331–354 | MR

[12] Peetre J., “Mixed problems for higher order elliptic equations in two variables, I”, Ann. Scuol. Norm. Sup. Pisa, 15 (1961), 337–353 ; II. Ann. Scuol Norm. Sup. Pisa, 17 (1963), 1–12 | MR | Zbl | MR | Zbl

[13] Vishik M. I., Eskin G. I., “Prostranstva Soboleva–Slobodetskogo peremennogo poryadka s vesovymi normami i ikh prilozheniya k smeshannym kraevym zadacham”, Sib. matem. zhurn., 9:5 (1968), 973–997 | MR

[14] Eskin G. I., Kraevye zadachi dlya ellipticheskikh psevdodifferentsialnykh uravnenii, Nauka, M., 1973 | MR

[15] Lebedev V. I., Agoshkov V. I., Operatory Puankare–Steklova i ikh prilozheniya v analize, Otdel vychislitelnoi matematiki AN SSSR, M., 1983 | MR

[16] Agoshkov V. I., Lebedev V. I., “Operatory Puankare–Steklova i metody razdeleniya oblasti v variatsionnykh zadachakh”, Vychislitelnye protsessy i sistemy, no. 2, Nauka, M., 1985, 173–226 | MR

[17] Oben Zh.-P., Priblizhennoe reshenie ellipticheskikh kraevykh zadach, Mir, M., 1977 | MR

[18] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR

[19] Rektoris K., Variatsionnye metody v matematicheskoi fizike i tekhnike, Mir, M., 1985 | MR | Zbl

[20] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, L., 1950

[21] Gagliardo E., “Caratterizzazione delle trace sulla frontiera relative ad alcune classi di funzioni in $n$ variabili”, Rend. Sem. Mathem. univ. di Padova, 27 (1957), 284–305 | MR | Zbl

[22] Slobodetskii L. N., “Obobschennye prostranstva S. L. Soboleva i ikh prilozheniya k kraevym zadacham dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, Uchen. zap. Leningr. gos. ped. in-ta, 197 (1958), 54–112 | MR

[23] Yakovlev G. N., “O sledakh funktsii iz prostranstva $W_p^l$ na kusochno-gladkikh poverkhnostyakh”, Matem. sb., 74 (116):4 (1967), 526–543 | MR | Zbl

[24] Adams R., Sobolev spaces, Academic Press, New York–San Francisco–London, 1975 | MR | Zbl

[25] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR

[26] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR | Zbl

[27] Rademacher H., “Über partielle und totale Differenzirbarkeit von Funktionen mehreren Variablen und über die Transformation der Doppelintegrale”, Math. Ann., 79 (1918), 340–359 | DOI | MR

[28] Kruzhkov S. N., “K voprosu o differentsiruemosti pochti vsyudu funktsii mnogikh peremennykh”, Vestn. MGU, 1976, no. 6, 67–70 | Zbl

[29] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1981 | MR

[30] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979

[31] Krein S. G., Lineinye uravneniya v banakhovom prostranstve, Nauka, M., 1971 | MR

[32] Berezanskii Yu. M., Razlozheniya po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965 | MR

[33] Agranovich M. S., “Nonself-ajoint elliptic operators on nonsmooth domains”, Russian J. Math. Phys., 2:2 (1994), 139–148 | MR | Zbl