Integrable Hamiltonian system with two degrees of freedom. The topological structure of saturated neighbourhoods of points of focus-focus and saddle-saddle type
Sbornik. Mathematics, Tome 187 (1996) no. 4, pp. 495-524 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One of the key problem in Hamiltonian mechanics is to describe the behaviour of integrable Hamiltonian system with two degrees of freedom in neighbourhoods of singular leaves of the Liouville foliation. In 1988 Lerman and Umanskii announced a classification theorem for such systems in the case when the singular leaf contains one point of rank zero. The proof was published in 1992 and 1993. In the solution of classical problems in physics and mechanics, integrable Hamiltonian systems arise which have a singular leaf with several points of rank zero. This paper concerns the topological classification of integrable Hamiltonian systems in the neighbourhood of singular leaves that contain an arbitrary number of points of rank zero.
@article{SM_1996_187_4_a1,
     author = {V. S. Matveev},
     title = {Integrable {Hamiltonian} system with two degrees of freedom. {The~topological} structure of saturated neighbourhoods of points of focus-focus and saddle-saddle type},
     journal = {Sbornik. Mathematics},
     pages = {495--524},
     year = {1996},
     volume = {187},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_4_a1/}
}
TY  - JOUR
AU  - V. S. Matveev
TI  - Integrable Hamiltonian system with two degrees of freedom. The topological structure of saturated neighbourhoods of points of focus-focus and saddle-saddle type
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 495
EP  - 524
VL  - 187
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_4_a1/
LA  - en
ID  - SM_1996_187_4_a1
ER  - 
%0 Journal Article
%A V. S. Matveev
%T Integrable Hamiltonian system with two degrees of freedom. The topological structure of saturated neighbourhoods of points of focus-focus and saddle-saddle type
%J Sbornik. Mathematics
%D 1996
%P 495-524
%V 187
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1996_187_4_a1/
%G en
%F SM_1996_187_4_a1
V. S. Matveev. Integrable Hamiltonian system with two degrees of freedom. The topological structure of saturated neighbourhoods of points of focus-focus and saddle-saddle type. Sbornik. Mathematics, Tome 187 (1996) no. 4, pp. 495-524. http://geodesic.mathdoc.fr/item/SM_1996_187_4_a1/

[1] Fomenko A. T., “Topologiya poverkhnostei postoyannoi energii integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izv. AN SSSR. Ser. matem., 50:6 (1986), 1276–1307 | MR | Zbl

[2] Fomenko A. T., Tsishang Kh., “Kriterii topologicheskoi ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 546–575 | MR | Zbl

[3] Lerman L. M., Umanskii Ya. L., Struktura puassonova deistviya na chetyrekhmernom simplekticheskom mnogoobrazii, Dep. v VINITI 10.07.81, No 3427, Gorkovskii universitet, Gorkii, 1981

[4] Lerman L. M., Umanskii Ya. L., “O klassifikatsii chetyrekhmernykh integriruemykh sistem v rasshirennykh okrestnostyakh prostykh osobykh tochek”, Metody kachestvennoi teorii i teorii bifurkatsii, Mezhvuzovskii tematicheskii sbornik nauchnykh trudov, ed. M. I. Karpovich, Gorkovskii universitet, Gorkii, 1988

[5] Bolsinov A. V., “Methods of Calculations of the Fomenko–Zieschang Invariant”, Adv. Soviet Math., 6 (1991), 147–183 | MR | Zbl

[6] Lerman L. M., Umanskii Ya. L., “Klassifikatsiya chetyrekhmernykh integriruemykh gamiltonovykh sistem i puassonovskikh deistvii $\mathbb R^2$ v rasshirennykh prostykh okrestnostyakh osobykh tochek, I”, Matem. sb., 183:12 (1992), 141–176 | MR | Zbl

[7] Oshemkov A. A., “Fomenko invariant for the Main Integrable Cases of teh Rigid Body Motion Equations”, Adv. in Soviet Math., 6 (1991), 67–146 | MR | Zbl

[8] Matveev V. S., “Vychislenie znachenii invarianta Fomenko dlya tochki tipa sedlo-sedlo integriruemoi gamiltonovoi sistemy”, Trudy seminara po vektornomu i tenzornomu analizu s ikh prilozheniyami k geometrii, mekhanike i fizike, no. 24, 1993, 75–104 | Zbl

[9] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topologicheskaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Spisok sistem maloi slozhnosti”, UMN, 45:2 (1990), 49–77 | MR

[10] Eliasson L. H., “Normal form Hamiltonian systems with Poisson commuting integral–elliptic case”, Comm. Math. Helv., 65 (1990), 4–35 | DOI | MR | Zbl

[11] Lerman L. M., Umanskii Ya. L., “Klassifikatsiya chetyrekhmernykh integriruemykh gamiltonovykh sistem i puassonovskikh deistvii $\mathbb R^2$ v rasshirennykh prostykh okrestnostyakh osobykh tochek, II”, Matem. sb., 183:12 (1992), 141–176 | MR | Zbl

[12] Lerman L. M., Umanskii Ya. L., “Klassifikatsiya chetyrekhmernykh integriruemykh gamiltonovykh sistem i puassonovskikh deistvii $\mathbb R^2$ v rasshirennykh okrestnostyakh prostykh osobykh tochek. III: Realizatsiya”, Matem. sb., 186:10 (1995), 89–102 | MR | Zbl