@article{SM_1996_187_4_a1,
author = {V. S. Matveev},
title = {Integrable {Hamiltonian} system with two degrees of freedom. {The~topological} structure of saturated neighbourhoods of points of focus-focus and saddle-saddle type},
journal = {Sbornik. Mathematics},
pages = {495--524},
year = {1996},
volume = {187},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1996_187_4_a1/}
}
TY - JOUR AU - V. S. Matveev TI - Integrable Hamiltonian system with two degrees of freedom. The topological structure of saturated neighbourhoods of points of focus-focus and saddle-saddle type JO - Sbornik. Mathematics PY - 1996 SP - 495 EP - 524 VL - 187 IS - 4 UR - http://geodesic.mathdoc.fr/item/SM_1996_187_4_a1/ LA - en ID - SM_1996_187_4_a1 ER -
%0 Journal Article %A V. S. Matveev %T Integrable Hamiltonian system with two degrees of freedom. The topological structure of saturated neighbourhoods of points of focus-focus and saddle-saddle type %J Sbornik. Mathematics %D 1996 %P 495-524 %V 187 %N 4 %U http://geodesic.mathdoc.fr/item/SM_1996_187_4_a1/ %G en %F SM_1996_187_4_a1
V. S. Matveev. Integrable Hamiltonian system with two degrees of freedom. The topological structure of saturated neighbourhoods of points of focus-focus and saddle-saddle type. Sbornik. Mathematics, Tome 187 (1996) no. 4, pp. 495-524. http://geodesic.mathdoc.fr/item/SM_1996_187_4_a1/
[1] Fomenko A. T., “Topologiya poverkhnostei postoyannoi energii integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izv. AN SSSR. Ser. matem., 50:6 (1986), 1276–1307 | MR | Zbl
[2] Fomenko A. T., Tsishang Kh., “Kriterii topologicheskoi ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 546–575 | MR | Zbl
[3] Lerman L. M., Umanskii Ya. L., Struktura puassonova deistviya na chetyrekhmernom simplekticheskom mnogoobrazii, Dep. v VINITI 10.07.81, No 3427, Gorkovskii universitet, Gorkii, 1981
[4] Lerman L. M., Umanskii Ya. L., “O klassifikatsii chetyrekhmernykh integriruemykh sistem v rasshirennykh okrestnostyakh prostykh osobykh tochek”, Metody kachestvennoi teorii i teorii bifurkatsii, Mezhvuzovskii tematicheskii sbornik nauchnykh trudov, ed. M. I. Karpovich, Gorkovskii universitet, Gorkii, 1988
[5] Bolsinov A. V., “Methods of Calculations of the Fomenko–Zieschang Invariant”, Adv. Soviet Math., 6 (1991), 147–183 | MR | Zbl
[6] Lerman L. M., Umanskii Ya. L., “Klassifikatsiya chetyrekhmernykh integriruemykh gamiltonovykh sistem i puassonovskikh deistvii $\mathbb R^2$ v rasshirennykh prostykh okrestnostyakh osobykh tochek, I”, Matem. sb., 183:12 (1992), 141–176 | MR | Zbl
[7] Oshemkov A. A., “Fomenko invariant for the Main Integrable Cases of teh Rigid Body Motion Equations”, Adv. in Soviet Math., 6 (1991), 67–146 | MR | Zbl
[8] Matveev V. S., “Vychislenie znachenii invarianta Fomenko dlya tochki tipa sedlo-sedlo integriruemoi gamiltonovoi sistemy”, Trudy seminara po vektornomu i tenzornomu analizu s ikh prilozheniyami k geometrii, mekhanike i fizike, no. 24, 1993, 75–104 | Zbl
[9] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topologicheskaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Spisok sistem maloi slozhnosti”, UMN, 45:2 (1990), 49–77 | MR
[10] Eliasson L. H., “Normal form Hamiltonian systems with Poisson commuting integral–elliptic case”, Comm. Math. Helv., 65 (1990), 4–35 | DOI | MR | Zbl
[11] Lerman L. M., Umanskii Ya. L., “Klassifikatsiya chetyrekhmernykh integriruemykh gamiltonovykh sistem i puassonovskikh deistvii $\mathbb R^2$ v rasshirennykh prostykh okrestnostyakh osobykh tochek, II”, Matem. sb., 183:12 (1992), 141–176 | MR | Zbl
[12] Lerman L. M., Umanskii Ya. L., “Klassifikatsiya chetyrekhmernykh integriruemykh gamiltonovykh sistem i puassonovskikh deistvii $\mathbb R^2$ v rasshirennykh okrestnostyakh prostykh osobykh tochek. III: Realizatsiya”, Matem. sb., 186:10 (1995), 89–102 | MR | Zbl