On the classification of groups of orientation-preserving homeomorphisms of $\mathbb R$.
Sbornik. Mathematics, Tome 187 (1996) no. 4, pp. 469-494 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Groups of orientation-preserving homeomorphisms of $\mathbb R$ are studied. Such metric invariants as projectively-invariant measures are investigated. The approach taken results in the classification of groups of homeomorphisms by the complexity of the set of all fixed points of the group elements. In each of the classes of groups thus distinguished a finer classification is carried out in terms of the complexity of the topological structure of orbits and the combinatorial properties of the group.
@article{SM_1996_187_4_a0,
     author = {L. A. Beklaryan},
     title = {On the~classification of groups of orientation-preserving homeomorphisms of $\mathbb R$.},
     journal = {Sbornik. Mathematics},
     pages = {469--494},
     year = {1996},
     volume = {187},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_4_a0/}
}
TY  - JOUR
AU  - L. A. Beklaryan
TI  - On the classification of groups of orientation-preserving homeomorphisms of $\mathbb R$.
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 469
EP  - 494
VL  - 187
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_4_a0/
LA  - en
ID  - SM_1996_187_4_a0
ER  - 
%0 Journal Article
%A L. A. Beklaryan
%T On the classification of groups of orientation-preserving homeomorphisms of $\mathbb R$.
%J Sbornik. Mathematics
%D 1996
%P 469-494
%V 187
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1996_187_4_a0/
%G en
%F SM_1996_187_4_a0
L. A. Beklaryan. On the classification of groups of orientation-preserving homeomorphisms of $\mathbb R$.. Sbornik. Mathematics, Tome 187 (1996) no. 4, pp. 469-494. http://geodesic.mathdoc.fr/item/SM_1996_187_4_a0/

[1] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR

[2] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980 | MR | Zbl

[3] Solodov V. V., “Gomeomorfizmy pryamoi i sloeniya”, Izv. AN SSSR. Ser. matem., 46:5 (1982), 1047–1060 | MR

[4] Grigorchuk R. I., Kurchanov P. F., “Nekotorye voprosy teorii grupp, svyazannye s geometriei”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 58, 1990, 191–256 | MR

[5] Grinlif F., Invariantnye srednie na topologicheskikh gruppakh i ikh prilozheniya, Mir, M., 1973

[6] Plante I. F., “Foliations with measure preserving holonomy”, Ann. Math., 102 (1975), 327–361 | DOI | MR | Zbl

[7] Plante I. F., “Solvable groups acting on the line”, Trans. Amer. Math. Soc., 278 (1983), 401–414 | DOI | MR | Zbl

[8] Salhi E., “Sur les ensembles locaux”, C. R. Acad. Sci. Paris Ser. I, 295:12 (1982), 691–694 | MR | Zbl

[9] Salhi E., “Sur un theorie de structure de feuilletage de codimension”, C. R. Acad. Sci. Paris Ser. I, 300:18 (1985), 635–638 | MR | Zbl

[10] Salhi E., “Niveau de feuilles”, C. R. Acad. Sci. Paris Ser. I, 301 (1985), 219–222 | MR | Zbl

[11] Beklaryan L. A., “K voprosu o klassifikatsii grupp gomeomorfizmov $\mathbb R$, sokhranyayuschikh orientatsiyu. I: Invariantnye mery”, Matem. sb., 187:3 (1996), 23–54 | MR | Zbl