Commutator subgroups of irreducible $\mathrm C$-group
Sbornik. Mathematics, Tome 187 (1996) no. 3, pp. 403-412

Voir la notice de l'article provenant de la source Math-Net.Ru

A classification up to isomorphism is given of groups that are irreducible orientable $\mathrm C$-groups in the sense of Kulikov and have commutator subgroups that are either free of rank 2 or the Heisenberg group $\mathscr H_3$. In addition, it is shown that the commutator subgroup of every Coxeter group generated by a single conjugacy class of elements is the commutator subgroup of some irreducible orientable $\mathrm C$-group.
@article{SM_1996_187_3_a4,
     author = {Yu. S. Semenov},
     title = {Commutator subgroups of irreducible $\mathrm C$-group},
     journal = {Sbornik. Mathematics},
     pages = {403--412},
     publisher = {mathdoc},
     volume = {187},
     number = {3},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_3_a4/}
}
TY  - JOUR
AU  - Yu. S. Semenov
TI  - Commutator subgroups of irreducible $\mathrm C$-group
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 403
EP  - 412
VL  - 187
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_3_a4/
LA  - en
ID  - SM_1996_187_3_a4
ER  - 
%0 Journal Article
%A Yu. S. Semenov
%T Commutator subgroups of irreducible $\mathrm C$-group
%J Sbornik. Mathematics
%D 1996
%P 403-412
%V 187
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1996_187_3_a4/
%G en
%F SM_1996_187_3_a4
Yu. S. Semenov. Commutator subgroups of irreducible $\mathrm C$-group. Sbornik. Mathematics, Tome 187 (1996) no. 3, pp. 403-412. http://geodesic.mathdoc.fr/item/SM_1996_187_3_a4/