Commutator subgroups of irreducible $\mathrm C$-group
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 187 (1996) no. 3, pp. 403-412
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A classification up to isomorphism is given of groups that are irreducible orientable $\mathrm C$-groups in the sense of Kulikov and have commutator subgroups that are either free of rank 2 or the Heisenberg group $\mathscr H_3$. In addition, it is shown that the commutator subgroup of every Coxeter group generated by a single conjugacy class of elements is the commutator subgroup of some irreducible orientable $\mathrm C$-group.
			
            
            
            
          
        
      @article{SM_1996_187_3_a4,
     author = {Yu. S. Semenov},
     title = {Commutator subgroups of irreducible $\mathrm C$-group},
     journal = {Sbornik. Mathematics},
     pages = {403--412},
     publisher = {mathdoc},
     volume = {187},
     number = {3},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_3_a4/}
}
                      
                      
                    Yu. S. Semenov. Commutator subgroups of irreducible $\mathrm C$-group. Sbornik. Mathematics, Tome 187 (1996) no. 3, pp. 403-412. http://geodesic.mathdoc.fr/item/SM_1996_187_3_a4/
