Commutator subgroups of irreducible $\mathrm C$-group
Sbornik. Mathematics, Tome 187 (1996) no. 3, pp. 403-412
Cet article a éte moissonné depuis la source Math-Net.Ru
A classification up to isomorphism is given of groups that are irreducible orientable $\mathrm C$-groups in the sense of Kulikov and have commutator subgroups that are either free of rank 2 or the Heisenberg group $\mathscr H_3$. In addition, it is shown that the commutator subgroup of every Coxeter group generated by a single conjugacy class of elements is the commutator subgroup of some irreducible orientable $\mathrm C$-group.
@article{SM_1996_187_3_a4,
author = {Yu. S. Semenov},
title = {Commutator subgroups of irreducible $\mathrm C$-group},
journal = {Sbornik. Mathematics},
pages = {403--412},
year = {1996},
volume = {187},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1996_187_3_a4/}
}
Yu. S. Semenov. Commutator subgroups of irreducible $\mathrm C$-group. Sbornik. Mathematics, Tome 187 (1996) no. 3, pp. 403-412. http://geodesic.mathdoc.fr/item/SM_1996_187_3_a4/
[1] Kervaire M., “On higher dimensional knots”, Diff. and combinat. topology, ed. S. Cairn, Princeton Univ. Press, 1965, 105–120 | MR
[2] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1972 | MR
[3] Kuzmin Yu. V., “Gruppy zauzlennykh kompaktnykh poverkhnostei i tsentralnye rasshireniya”, Matem. sb., 187:2 (1996), 81–102 | MR | Zbl