Commutator subgroups of irreducible $\mathrm C$-group
Sbornik. Mathematics, Tome 187 (1996) no. 3, pp. 403-412 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A classification up to isomorphism is given of groups that are irreducible orientable $\mathrm C$-groups in the sense of Kulikov and have commutator subgroups that are either free of rank 2 or the Heisenberg group $\mathscr H_3$. In addition, it is shown that the commutator subgroup of every Coxeter group generated by a single conjugacy class of elements is the commutator subgroup of some irreducible orientable $\mathrm C$-group.
@article{SM_1996_187_3_a4,
     author = {Yu. S. Semenov},
     title = {Commutator subgroups of irreducible $\mathrm C$-group},
     journal = {Sbornik. Mathematics},
     pages = {403--412},
     year = {1996},
     volume = {187},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_3_a4/}
}
TY  - JOUR
AU  - Yu. S. Semenov
TI  - Commutator subgroups of irreducible $\mathrm C$-group
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 403
EP  - 412
VL  - 187
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_3_a4/
LA  - en
ID  - SM_1996_187_3_a4
ER  - 
%0 Journal Article
%A Yu. S. Semenov
%T Commutator subgroups of irreducible $\mathrm C$-group
%J Sbornik. Mathematics
%D 1996
%P 403-412
%V 187
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1996_187_3_a4/
%G en
%F SM_1996_187_3_a4
Yu. S. Semenov. Commutator subgroups of irreducible $\mathrm C$-group. Sbornik. Mathematics, Tome 187 (1996) no. 3, pp. 403-412. http://geodesic.mathdoc.fr/item/SM_1996_187_3_a4/

[1] Kervaire M., “On higher dimensional knots”, Diff. and combinat. topology, ed. S. Cairn, Princeton Univ. Press, 1965, 105–120 | MR

[2] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1972 | MR

[3] Kuzmin Yu. V., “Gruppy zauzlennykh kompaktnykh poverkhnostei i tsentralnye rasshireniya”, Matem. sb., 187:2 (1996), 81–102 | MR | Zbl