Approximation of a partial differential operator by bounded operators on a class of functions of finite smoothness
Sbornik. Mathematics, Tome 187 (1996) no. 3, pp. 385-402 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We established the weak asymptotic decrease of the corresponding value in the problem of best approximation in the class of functions for which the moduli of continuity of the leading derivatives of a partial differential operator are majorized by prescribed bounded operators from one space with an integral norm to another.
@article{SM_1996_187_3_a3,
     author = {S. N. Kudryavtsev},
     title = {Approximation of a~partial differential operator by bounded operators on a~class of functions of finite smoothness},
     journal = {Sbornik. Mathematics},
     pages = {385--402},
     year = {1996},
     volume = {187},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_3_a3/}
}
TY  - JOUR
AU  - S. N. Kudryavtsev
TI  - Approximation of a partial differential operator by bounded operators on a class of functions of finite smoothness
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 385
EP  - 402
VL  - 187
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_3_a3/
LA  - en
ID  - SM_1996_187_3_a3
ER  - 
%0 Journal Article
%A S. N. Kudryavtsev
%T Approximation of a partial differential operator by bounded operators on a class of functions of finite smoothness
%J Sbornik. Mathematics
%D 1996
%P 385-402
%V 187
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1996_187_3_a3/
%G en
%F SM_1996_187_3_a3
S. N. Kudryavtsev. Approximation of a partial differential operator by bounded operators on a class of functions of finite smoothness. Sbornik. Mathematics, Tome 187 (1996) no. 3, pp. 385-402. http://geodesic.mathdoc.fr/item/SM_1996_187_3_a3/

[1] Stechkin S. B., “Nailuchshee priblizhenie lineinykh operatorov”, Matem. zametki, 1:2 (1967), 137–148 | MR | Zbl

[2] Arestov V. V., “Nailuchshee priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye zadachi”, Matem. zametki, 40:2 (1986), 269–285 | MR | Zbl

[3] Timoshin O. A., “O nailuchshem priblizhenii differentsiruemykh operatorov s chastnymi proizvodnymi”, Matem. zametki, 46:1 (1989), 78–87 | MR | Zbl

[4] Timoshin O. A., “Poryadki nailuchshego priblizheniya differentsiruemykh operatorov s chastnymi proizvodnymi”, Matem. zametki, 48:4 (1990), 115–121 | MR | Zbl

[5] Kudryavtsev S. N., “Nekotorye zadachi teorii priblizhenii dlya odnogo klassa funktsii konechnoi gladkosti”, Matem. sb., 183:2 (1992), 3–20 | MR | Zbl

[6] Kudryavtsev S. N., “Vosstanovlenie funktsii vmeste s ikh proizvodnymi po znacheniyam funktsii v zadannom chisle tochek”, Izv. RAN. Ser. matem., 58:6 (1994), 79–104 | MR | Zbl