Hilbert transform and exponential integral estimates of rectangular sums of double Fourier series
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 187 (1996) no. 3, pp. 365-384
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A new integral estimate for rectangular partial sums of double Fourier series is obtained. 
The main result of the paper is the following.
Theorem.
{\it For any $f\in L\log L(\mathbf T^2)$ and $\delta>0$ there exists a set 
$E_{\delta,f}\in\mathbf T^2$, $|E_{\delta,f}|>(2\pi)^2-\delta$ such that}
\begin{align*}
1)\quad 
\int_{E_{\delta,f}}\exp\biggl[\frac{c_1\delta|S_{N,M}(x,y,f)|}{\|f\|_{L\log L(\mathbf T^2)}}\biggr]^{1/2}\,dx\,dy\leqslant C_2, \qquad N,M=1,2,\dots,
\\
2)\quad 
\lim_{N,M\to\infty}\int_{E_{\delta,f}}\bigl[\exp(|S_{N,M}(x,y,f)-f(x,y)|)^{1/2}-1\bigr]\,dx\,dy=0.
\end{align*} This theorem yields estimates almost everywhere for rectangular sums of double Fourier series and convergence in $L^p$ on sets of large measure.
			
            
            
            
          
        
      @article{SM_1996_187_3_a2,
     author = {G. A. Karagulian},
     title = {Hilbert transform and exponential integral estimates of rectangular sums of double {Fourier} series},
     journal = {Sbornik. Mathematics},
     pages = {365--384},
     publisher = {mathdoc},
     volume = {187},
     number = {3},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_3_a2/}
}
                      
                      
                    TY - JOUR AU - G. A. Karagulian TI - Hilbert transform and exponential integral estimates of rectangular sums of double Fourier series JO - Sbornik. Mathematics PY - 1996 SP - 365 EP - 384 VL - 187 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1996_187_3_a2/ LA - en ID - SM_1996_187_3_a2 ER -
G. A. Karagulian. Hilbert transform and exponential integral estimates of rectangular sums of double Fourier series. Sbornik. Mathematics, Tome 187 (1996) no. 3, pp. 365-384. http://geodesic.mathdoc.fr/item/SM_1996_187_3_a2/
