On the classification of groups of orientation-preserving homeomorphisms of $\mathbb R$.
Sbornik. Mathematics, Tome 187 (1996) no. 3, pp. 335-364 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Groups of orientation-preserving homeomorphisms of $\mathbb R$ are studied. Such metric invariants as invariant and projectively-invariant measures are investigated. The approach taken results in the classification of groups of homeomorphisms by the complexity of the set of all fixed points of the group elements. In each of the classes of groups thus distinguished a finer classification is carried out in terms of the complexity of the topological structure of orbits and the combinatorial properties of the group.
@article{SM_1996_187_3_a1,
     author = {L. A. Beklaryan},
     title = {On the classification of groups of orientation-preserving homeomorphisms of $\mathbb R$.},
     journal = {Sbornik. Mathematics},
     pages = {335--364},
     year = {1996},
     volume = {187},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_3_a1/}
}
TY  - JOUR
AU  - L. A. Beklaryan
TI  - On the classification of groups of orientation-preserving homeomorphisms of $\mathbb R$.
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 335
EP  - 364
VL  - 187
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_3_a1/
LA  - en
ID  - SM_1996_187_3_a1
ER  - 
%0 Journal Article
%A L. A. Beklaryan
%T On the classification of groups of orientation-preserving homeomorphisms of $\mathbb R$.
%J Sbornik. Mathematics
%D 1996
%P 335-364
%V 187
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1996_187_3_a1/
%G en
%F SM_1996_187_3_a1
L. A. Beklaryan. On the classification of groups of orientation-preserving homeomorphisms of $\mathbb R$.. Sbornik. Mathematics, Tome 187 (1996) no. 3, pp. 335-364. http://geodesic.mathdoc.fr/item/SM_1996_187_3_a1/

[1] Puankare A., Izbrannye trudy, t. I, II, Nauka, M., 1972

[2] Arnold V. I., “Malye znamenateli. I: Ob otobrazheniyakh okruzhnosti na sebya”, Izv. AN SSSR. Ser. matem., 25:1 (1961), 21–86 | MR | Zbl

[3] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR

[4] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980 | MR | Zbl

[5] Alfors L. V., Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969 | MR

[6] Hinkkanen A., “The structure of certain quasisymmetrik groups”, Memoirs of the Amer. Math. Soc., 83:422 (1990), 85 | MR

[7] Novikov S. P., “Topologiya sloenii”, Tr. MMO, 14, URSS, M., 1965, 248–278 | MR | Zbl

[8] Solodov V. V., “Gomeomorfizmy pryamoi i sloeniya”, Izv. AN SSSR. Ser. matem., 46:5 (1982), 1047–1060 | MR

[9] Solodov V. V., “Gomeomorfizmy okruzhnosti i sloeniya”, Izv. AN SSSR. Ser. matem., 48:3 (1984), 599–613 | MR | Zbl

[10] Kurosh A. G., Lektsii po obschei algebre, Nauka, M., 1973 | Zbl

[11] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1982 | MR | Zbl

[12] Grigorchuk R. I., Kurchanov P. F., “Nekotorye voprosy teorii grupp, svyazannye s geometriei”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 58, 1990, 191–256 | MR

[13] Hector G., Hirst U., Introduction to the geometric theory of foliations, part II, Wiley, Vizbaden, 1983

[14] Grinlif F., Invariantnye srednie na topologicheskikh gruppakh i ikh prilozheniya, Mir, M., 1973

[15] Kokorin A. I., Kopytov V. M., Lineino uporyadochennye gruppy, Nauka, M., 1972 | MR | Zbl

[16] Plante I. F., “Foliations with measure preserving holonomy”, Ann. Math., 102 (1975), 327–361 | DOI | MR | Zbl

[17] Plante I. F., “Solvable groups acting on the line”, Transl. Amer. Math. Soc., 278 (1983), 401–414 | DOI | MR | Zbl

[18] Karlovich Yu. I., “$C$-algebra operatorov tipa svertki s diskretnymi gruppami sdvigov i ostsilliruyuschimi koeffitsientami”, DAN SSSR, 302:3 (1988), 535–540 | MR

[19] Beklaryan L. A., “O privodimosti differentsialnogo uravneniya s otklonyayuschimsya argumentom k uravneniyu s postoyannymi soizmerimymi otkloneniyami”, Matem. zametki, 44:5 (1988), 561–565 | MR

[20] Beklaryan L. A., Differentsialnoe uravnenie s otklonyayuschimsya argumentom kak beskonechnomernaya dinamicheskaya sistema, Preprint, Vychislitelnyi tsentr AN SSSR, 1989 | MR | Zbl

[21] Beklaryan L. A., “Ob odnom metode regulyarizatsii kraevykh zadach dlya differentsialnykh uravnenii s otklonyayuschimsya argumentom”, DAN SSSR, 317:5 (1991), 1033–1037 | MR

[22] Beklaryan L. A., “Zadacha optimalnogo upravleniya dlya sistem s otklonyayuschimsya argumentom i ee svyaz s konechno-porozhdennoi gruppoi gomeomorfizmov $R$, porozhdennoi funktsiyami otkloneniya”, DAN SSSR, 317:6 (1991), 1289–1294 | MR | Zbl

[23] Beklaryan L. A., “Struktura faktorgruppy gruppy gomeomorfizmov $R$, sokhranyayuschikh orientatsiyu, po podgruppe, porozhdennoi ob'edineniem stabilizatorov”, DAN, 331:2 (1993), 137–139 | MR | Zbl

[24] Beklaryan L. A., “Invariantnye i proektivno-invariantnye mery dlya grupp gomeomorfizmov $R$, sokhranyayuschikh orientatsiyu”, DAN, 332:6 (1993), 679–681 | Zbl

[25] Imanishi H., “Structure of codimention 1 foliations without holonomy on manifolds with abelian fundamental group”, J. Math. Kyoto Univ., 19:3 (1979), 481–495 | MR | Zbl

[26] Salhi E., “Sur les ensembles locaux”, C. R. Acad. Sci. Paris. Ser. I, 295:12 (1982), 691–694 | MR | Zbl

[27] Salhi E., “Sur une theorie de structure de feuilletage de codimension”, C. R. Acad. Sci. Paris. Ser. I, 300:18 (1985), 635–638 | MR | Zbl

[28] Salhi E., “Niveau defeuilles”, C. R. Acad. Sci. Paris. Ser. I, 301:5 (1985), 219–222 | MR | Zbl

[29] Matsumoto S., “Numerical invariants for semiconjugacy of homeomorphisms of the circle”, Proc. Amer. Math. Soc., 98:1 (1986), 163–168 | DOI | MR | Zbl

[30] Matsumoto S., “Some remarks on foliated $S^1$ bundles”, Invent. Math., 90 (1987), 343–358 | DOI | MR | Zbl

[31] Chys E., “Groupes d'homeomorphismes du cercle et cohomologie bornée, III”, Contemporary Mathematics, 58 (1987), 81–105