Points of joint continuity for the semigroup of ultrafilters on an Abelian group
Sbornik. Mathematics, Tome 187 (1996) no. 2, pp. 287-296 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Stone-Cech compactification $\beta G$ of a discrete Abelian group $G$ is identified with the set of all ultrafilters on $G$. The operation of addition on $G$ can be extended naturally to a semigroup operation on $\beta G$. A pair of ultrafilters $(p,q)$ on $G$ is a point of joint continuity for the semigroup $\beta G$ if and only if the family of subsets $\{P+Q:P\in p,\ Q\in q\}$ forms an ultrafilter base. The main result of the present paper can be stated as follow: if $G$ is countable group with finitely many elements of order 2 and $(p,q)$ is a point of joint continuity for $\beta G$, then at least one of the ultrafilters $p$ of $q$ must be principal. Examples demonstrating that the restrictions imposed on $G$ are essential are constructed under some further assumptions additional to the standard axioms of $ZFC$ set theory.
@article{SM_1996_187_2_a6,
     author = {I. V. Protasov},
     title = {Points of joint continuity for the~semigroup of ultrafilters on {an~Abelian} group},
     journal = {Sbornik. Mathematics},
     pages = {287--296},
     year = {1996},
     volume = {187},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_2_a6/}
}
TY  - JOUR
AU  - I. V. Protasov
TI  - Points of joint continuity for the semigroup of ultrafilters on an Abelian group
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 287
EP  - 296
VL  - 187
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_2_a6/
LA  - en
ID  - SM_1996_187_2_a6
ER  - 
%0 Journal Article
%A I. V. Protasov
%T Points of joint continuity for the semigroup of ultrafilters on an Abelian group
%J Sbornik. Mathematics
%D 1996
%P 287-296
%V 187
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1996_187_2_a6/
%G en
%F SM_1996_187_2_a6
I. V. Protasov. Points of joint continuity for the semigroup of ultrafilters on an Abelian group. Sbornik. Mathematics, Tome 187 (1996) no. 2, pp. 287-296. http://geodesic.mathdoc.fr/item/SM_1996_187_2_a6/

[1] Hindman N., “Ultrafilters and combinatorial number theory”, Lect. Notes Math., 751, 1979, 49–184 | MR

[2] Baker J. W., Milnes P., “The ideal structure of the Stone–Čech compactification of group”, Math. Proc. Camb. Phil. Soc., 82 (1977), 401–409 | DOI | MR | Zbl

[3] Comfort W. W., “Ultrafilters: some old and some new results”, Bull. Amer. Math. Soc., 83 (1977), 417–454 | DOI | MR

[4] Ruppert W., “Compact semitopological semigroups: an intrinsic theory”, Lect. Notes Math., 1079, 1984, 1–260 | MR

[5] Zelenyuk E. G., “Topologicheskie gruppy s konechnymi polugruppami ultrafiltrov”, Dokl. AN Ukrainy, 1995, no. 6 (to appear) | MR | Zbl