Points of joint continuity for the~semigroup of ultrafilters on an~Abelian group
Sbornik. Mathematics, Tome 187 (1996) no. 2, pp. 287-296

Voir la notice de l'article provenant de la source Math-Net.Ru

The Stone-Cech compactification $\beta G$ of a discrete Abelian group $G$ is identified with the set of all ultrafilters on $G$. The operation of addition on $G$ can be extended naturally to a semigroup operation on $\beta G$. A pair of ultrafilters $(p,q)$ on $G$ is a point of joint continuity for the semigroup $\beta G$ if and only if the family of subsets $\{P+Q:P\in p,\ Q\in q\}$ forms an ultrafilter base. The main result of the present paper can be stated as follow: if $G$ is countable group with finitely many elements of order 2 and $(p,q)$ is a point of joint continuity for $\beta G$, then at least one of the ultrafilters $p$ of $q$ must be principal. Examples demonstrating that the restrictions imposed on $G$ are essential are constructed under some further assumptions additional to the standard axioms of $ZFC$ set theory.
@article{SM_1996_187_2_a6,
     author = {I. V. Protasov},
     title = {Points of joint continuity for the~semigroup of ultrafilters on {an~Abelian} group},
     journal = {Sbornik. Mathematics},
     pages = {287--296},
     publisher = {mathdoc},
     volume = {187},
     number = {2},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_2_a6/}
}
TY  - JOUR
AU  - I. V. Protasov
TI  - Points of joint continuity for the~semigroup of ultrafilters on an~Abelian group
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 287
EP  - 296
VL  - 187
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_2_a6/
LA  - en
ID  - SM_1996_187_2_a6
ER  - 
%0 Journal Article
%A I. V. Protasov
%T Points of joint continuity for the~semigroup of ultrafilters on an~Abelian group
%J Sbornik. Mathematics
%D 1996
%P 287-296
%V 187
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1996_187_2_a6/
%G en
%F SM_1996_187_2_a6
I. V. Protasov. Points of joint continuity for the~semigroup of ultrafilters on an~Abelian group. Sbornik. Mathematics, Tome 187 (1996) no. 2, pp. 287-296. http://geodesic.mathdoc.fr/item/SM_1996_187_2_a6/