The groups of knotted compact surfaces, and central extensions
Sbornik. Mathematics, Tome 187 (1996) no. 2, pp. 237-257 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A homological characterization is given for groups admitting a presentation by means of defining relations of the form $x^{-1}_\alpha x_\beta x_\alpha =x_\gamma ^\varepsilon$ (the $x_*$ are generators, $\varepsilon =\pm 1$). The importance of such groups for geometry is connected with the fact that the finitely presented groups of this class are precisely the groups of knotted compact surfaces in $\mathbb R^4$.
@article{SM_1996_187_2_a4,
     author = {Yu. V. Kuz'min},
     title = {The groups of knotted compact surfaces, and central extensions},
     journal = {Sbornik. Mathematics},
     pages = {237--257},
     year = {1996},
     volume = {187},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_2_a4/}
}
TY  - JOUR
AU  - Yu. V. Kuz'min
TI  - The groups of knotted compact surfaces, and central extensions
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 237
EP  - 257
VL  - 187
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_2_a4/
LA  - en
ID  - SM_1996_187_2_a4
ER  - 
%0 Journal Article
%A Yu. V. Kuz'min
%T The groups of knotted compact surfaces, and central extensions
%J Sbornik. Mathematics
%D 1996
%P 237-257
%V 187
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1996_187_2_a4/
%G en
%F SM_1996_187_2_a4
Yu. V. Kuz'min. The groups of knotted compact surfaces, and central extensions. Sbornik. Mathematics, Tome 187 (1996) no. 2, pp. 237-257. http://geodesic.mathdoc.fr/item/SM_1996_187_2_a4/

[1] Kervaire M., “On higher dimensional knots”, Differencial and Combinatorial Topology, Princeton Univ. Press, 1965, 105–120 | MR

[2] Kulikov Vic. S., Kuzmin Yu. V., “On the fundumental groups of the complements to codimension 2 submanifolds of sphere”, LMS lectures series (to appear)

[3] Simon J., “Wirtinger approximations and the knot groups of $S^n$ in $S^{n+2}$”, Pac. J. Math., 90 (1980), 177–190 | MR | Zbl

[4] Hausmann J., Kervaire M., “Sous-gropes derives gropes de noeud”, L'Enseignement M., 24 (1978), 111–123 | MR | Zbl

[5] Suzuki S., “Problems of 2-spheres in 4-sphere”, Math. Sem. Notes. Kobe University, 4:3 (1976)

[6] Hillman J., 2-knots and their groups, Cambridge Univ. Press, 1989 | MR

[7] Howie J., “On the asphericiy of ribbon disk complements”, Trans. Amer. Math. Soc., 289 (1985), 281–302 | DOI | MR | Zbl

[8] Krouel R., Foks R., Vvedenie v teoriyu uzlov, Mir, M., 1985

[9] Kulikov Vik. S., “Geometricheskaya realizatsiya $C$-grupp”, Izv. RAN. Ser. matem., 58:4 (1994), 194–203 | Zbl

[10] Gilbert N., Howie J., “LOG groups, higher knot groups and Schur multipiers”, Bull. London Math. Soc. (to appear)

[11] Kuzmin Yu. V., “Ob odnom sposobe postroeniya $C$-grupp”, Izv. RAN. Ser. matem., 59 (1995), 105–124 | MR | Zbl

[12] Milnor Dzh., Vvedenie v algebraicheskuyu $\mathrm K$-teoriyu, Mir, M., 1974 | MR | Zbl

[13] Gorenstein D., Konechnye prostye gruppy, Mir, M., 1985 | MR | Zbl

[14] Klyachko A. A., “A funny property of sphere and equations over groups”, Comm. Algebra, 21:7 (1993), 2555–2575 | DOI | MR | Zbl

[15] Semenov Yu. S., “O kommutantakh neprivodimykh $\mathrm C$-grupp”, Matem. sb., 187:3 (1996), 93–102 | MR | Zbl