The groups of knotted compact surfaces, and central extensions
Sbornik. Mathematics, Tome 187 (1996) no. 2, pp. 237-257

Voir la notice de l'article provenant de la source Math-Net.Ru

A homological characterization is given for groups admitting a presentation by means of defining relations of the form $x^{-1}_\alpha x_\beta x_\alpha =x_\gamma ^\varepsilon$ (the $x_*$ are generators, $\varepsilon =\pm 1$). The importance of such groups for geometry is connected with the fact that the finitely presented groups of this class are precisely the groups of knotted compact surfaces in $\mathbb R^4$.
@article{SM_1996_187_2_a4,
     author = {Yu. V. Kuz'min},
     title = {The groups of knotted compact surfaces, and central extensions},
     journal = {Sbornik. Mathematics},
     pages = {237--257},
     publisher = {mathdoc},
     volume = {187},
     number = {2},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_2_a4/}
}
TY  - JOUR
AU  - Yu. V. Kuz'min
TI  - The groups of knotted compact surfaces, and central extensions
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 237
EP  - 257
VL  - 187
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_2_a4/
LA  - en
ID  - SM_1996_187_2_a4
ER  - 
%0 Journal Article
%A Yu. V. Kuz'min
%T The groups of knotted compact surfaces, and central extensions
%J Sbornik. Mathematics
%D 1996
%P 237-257
%V 187
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1996_187_2_a4/
%G en
%F SM_1996_187_2_a4
Yu. V. Kuz'min. The groups of knotted compact surfaces, and central extensions. Sbornik. Mathematics, Tome 187 (1996) no. 2, pp. 237-257. http://geodesic.mathdoc.fr/item/SM_1996_187_2_a4/