On spaces of polynomial knots
Sbornik. Mathematics, Tome 187 (1996) no. 2, pp. 193-213 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The homology groups of the spaces of non-singular polynomial (of degree $\leqslant 4$) embeddings $\mathbb R^1\to \mathbb R^n$ are calculated. General algebraic techniques of such calculations or spaces of polynomial knots of arbitrary degree are described.
@article{SM_1996_187_2_a2,
     author = {V. A. Vassiliev},
     title = {On spaces of polynomial knots},
     journal = {Sbornik. Mathematics},
     pages = {193--213},
     year = {1996},
     volume = {187},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_2_a2/}
}
TY  - JOUR
AU  - V. A. Vassiliev
TI  - On spaces of polynomial knots
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 193
EP  - 213
VL  - 187
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_2_a2/
LA  - en
ID  - SM_1996_187_2_a2
ER  - 
%0 Journal Article
%A V. A. Vassiliev
%T On spaces of polynomial knots
%J Sbornik. Mathematics
%D 1996
%P 193-213
%V 187
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1996_187_2_a2/
%G en
%F SM_1996_187_2_a2
V. A. Vassiliev. On spaces of polynomial knots. Sbornik. Mathematics, Tome 187 (1996) no. 2, pp. 193-213. http://geodesic.mathdoc.fr/item/SM_1996_187_2_a2/

[1] Shastri A. R., Polynomial representations of knots, Preprint, January 1991 | MR | Zbl

[2] Vassiliev V. A., “Cohomology of knot spaces”, Theory of Singularities and its Applications, Advances in Soviet Math., 1, ed. V. I. Arnold, AMS, Providence, RI, 1990, 23–69 | MR | Zbl

[3] Vassiliev V. A., Complements of discriminants of smooth maps: topology and applications, Revised ed., Transl. of Math. Monogr., AMS, Providence, RI, 1994 | MR

[4] Arnold V. I., “O nekotorykh topologicheskikh invariantakh algebraicheskikh funktsii”, Tr. MMO, 21, URSS, M., 1970, 27–46 | MR | Zbl

[5] Vasilev V. A., “Geometricheskaya realizatsiya gomologii klassicheskikh grupp Li i kompleksy, $S$-dvoistvennye k flagovym mnogoobraziyam”, Algebra i Analiz, 3:4 (1991), 113–120 | MR

[6] Vassiliev V. A., “Invariants of ornaments”, Singularities and Curves, Advances in Soviet Math., 21, ed. V. I. Arnold, AMS, Providence, RI, 1994, 225–262 | MR | Zbl

[7] Milnor Dzh., Teoriya Morsa, Mir, M., 1963 | MR