Boundedness in $C[-1,1]$ of the~de~la~Vall\'ee-Poussin means for discrete Chebyshev--Fourier sums
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 187 (1996) no. 1, pp. 141-158
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Approximation properties of the de la Vallée-Poussin means $v_{m,n}=v_{m,n}(f)=v_{m,n}(f,x)=v_{m,n}(f,x,N)$
of discrete Chebyshev–Fourier sums in the Chebyshev polynomials forming an orthonormal system on the set $\Omega =\bigl \{-1+2j/(N-1)\bigr \}_{j=0}^{N-1}$ with respect to the weight $\rho (x)=2/N$ are considered. For $0$ and $n \leqslant a\sqrt N$ the existence of a constant $c=c(a,b,d)$ is established such that $\|v_{m,n}\| \leqslant c$, where $\|v_{m,n}\|$ is the norm of the operator $v_{m,n}$ in the space $C[-1,1]$. As a consequence, it is proved for an algebraic polinomial $p_n(x)$) of degree 
$n \leqslant a\sqrt N$ that if 
$\max \bigl \{|p_n(x)|:x \in \Omega \bigr \} \leqslant 1$, then the following estimate is valid:  
$\|p_n\|=\max \bigl \{|p_n(x)|:x\in [-1,1]\bigr \} \leqslant c(a)$.
			
            
            
            
          
        
      @article{SM_1996_187_1_a8,
     author = {I. I. Sharapudinov},
     title = {Boundedness in $C[-1,1]$ of {the~de~la~Vall\'ee-Poussin} means for discrete {Chebyshev--Fourier} sums},
     journal = {Sbornik. Mathematics},
     pages = {141--158},
     publisher = {mathdoc},
     volume = {187},
     number = {1},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_1_a8/}
}
                      
                      
                    TY - JOUR AU - I. I. Sharapudinov TI - Boundedness in $C[-1,1]$ of the~de~la~Vall\'ee-Poussin means for discrete Chebyshev--Fourier sums JO - Sbornik. Mathematics PY - 1996 SP - 141 EP - 158 VL - 187 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1996_187_1_a8/ LA - en ID - SM_1996_187_1_a8 ER -
I. I. Sharapudinov. Boundedness in $C[-1,1]$ of the~de~la~Vall\'ee-Poussin means for discrete Chebyshev--Fourier sums. Sbornik. Mathematics, Tome 187 (1996) no. 1, pp. 141-158. http://geodesic.mathdoc.fr/item/SM_1996_187_1_a8/
