Boundedness in $C[-1,1]$ of the de la Vallée-Poussin means for discrete Chebyshev–Fourier sums
Sbornik. Mathematics, Tome 187 (1996) no. 1, pp. 141-158 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Approximation properties of the de la Vallée-Poussin means $v_{m,n}=v_{m,n}(f)=v_{m,n}(f,x)=v_{m,n}(f,x,N)$ of discrete Chebyshev–Fourier sums in the Chebyshev polynomials forming an orthonormal system on the set $\Omega =\bigl \{-1+2j/(N-1)\bigr \}_{j=0}^{N-1}$ with respect to the weight $\rho (x)=2/N$ are considered. For $0 and $n \leqslant a\sqrt N$ the existence of a constant $c=c(a,b,d)$ is established such that $\|v_{m,n}\| \leqslant c$, where $\|v_{m,n}\|$ is the norm of the operator $v_{m,n}$ in the space $C[-1,1]$. As a consequence, it is proved for an algebraic polinomial $p_n(x)$) of degree $n \leqslant a\sqrt N$ that if $\max \bigl \{|p_n(x)|:x \in \Omega \bigr \} \leqslant 1$, then the following estimate is valid: $\|p_n\|=\max \bigl \{|p_n(x)|:x\in [-1,1]\bigr \} \leqslant c(a)$.
@article{SM_1996_187_1_a8,
     author = {I. I. Sharapudinov},
     title = {Boundedness in $C[-1,1]$ of {the~de~la~Vall\'ee-Poussin} means for discrete {Chebyshev{\textendash}Fourier} sums},
     journal = {Sbornik. Mathematics},
     pages = {141--158},
     year = {1996},
     volume = {187},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_1_a8/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
TI  - Boundedness in $C[-1,1]$ of the de la Vallée-Poussin means for discrete Chebyshev–Fourier sums
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 141
EP  - 158
VL  - 187
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_1_a8/
LA  - en
ID  - SM_1996_187_1_a8
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%T Boundedness in $C[-1,1]$ of the de la Vallée-Poussin means for discrete Chebyshev–Fourier sums
%J Sbornik. Mathematics
%D 1996
%P 141-158
%V 187
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1996_187_1_a8/
%G en
%F SM_1996_187_1_a8
I. I. Sharapudinov. Boundedness in $C[-1,1]$ of the de la Vallée-Poussin means for discrete Chebyshev–Fourier sums. Sbornik. Mathematics, Tome 187 (1996) no. 1, pp. 141-158. http://geodesic.mathdoc.fr/item/SM_1996_187_1_a8/

[1] Chebyshev P. L., “Ob interpolirovanii velichin ravnootstoyaschikh (1875)”, Poln. sobr. soch., 3, Izd-vo AN SSSR, M., 1948, 66–87

[2] Sharapudinov I. I., “O skhodimosti metoda naimenshikh kvadratov”, Matem. zametki, 53:3 (1993), 131–143 | MR | Zbl

[3] Karlin S., McGregor J. L., “The Hahn polynomials, formulas and application”, Scripta Math., 26:1, 33–46 | MR | Zbl

[4] Sharapudinov I. I., “Ob asimptotike mnogochlenov Chebysheva, ortogonalnykh na konechnoi sisteme tochek”, Vestnik MGU. Seriya 1, 1992, no. 1, 29–35 | MR

[5] Sharapudinov I. I., “Asimptoticheskie svoistva i vesovye otsenki dlya ortogonalnykh mnogochlenov Chebysheva–Khana”, Matem. sb., 182:3 (1991), 408–420

[6] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962

[7] Coppersmith D., Rivlin T. J., “The growth of polynomials bounded of equally spaced points”, SIAM J. Math. Anal., 23 (1992), 970–983 | DOI | MR | Zbl

[8] Schönhage A., “Fehlerfortpflantzung bei Interpolation”, Numer. Math., 1961, no. 3, 62–71 | DOI | MR | Zbl

[9] Ehlich H., Zeller K., “Schwankung von Polynomen zwischen Gitterpunkten”, Math. Z., 1964, no. 86, 41–44 | DOI | MR | Zbl

[10] Ehlich H., Zeller K., “Numerische Abschätzung von Polynomen”, ZAMM, 1965, no. 45, T20–T22 | MR | Zbl