Hermitian widths, mean dimension, and multiple packings
Sbornik. Mathematics, Tome 187 (1996) no. 1, pp. 119-139

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is a study of the behaviour of widths describing the approximation properties of subspaces generated by the translates of $N$ fixed functions with respect to some lattice. A connection is established between the approximation characteristics and the geometric properties of $N$-fold packing of Lebesgue sets of a function depending on the metrics of the spaces in which the approximation is carried out. The concept of the mean dimension is introduced, and it is proved that the widths under study converge to the Kolmogorov widths of the same mean dimension.
@article{SM_1996_187_1_a7,
     author = {N. A. Strelkov},
     title = {Hermitian widths, mean dimension, and multiple packings},
     journal = {Sbornik. Mathematics},
     pages = {119--139},
     publisher = {mathdoc},
     volume = {187},
     number = {1},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_1_a7/}
}
TY  - JOUR
AU  - N. A. Strelkov
TI  - Hermitian widths, mean dimension, and multiple packings
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 119
EP  - 139
VL  - 187
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_1_a7/
LA  - en
ID  - SM_1996_187_1_a7
ER  - 
%0 Journal Article
%A N. A. Strelkov
%T Hermitian widths, mean dimension, and multiple packings
%J Sbornik. Mathematics
%D 1996
%P 119-139
%V 187
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1996_187_1_a7/
%G en
%F SM_1996_187_1_a7
N. A. Strelkov. Hermitian widths, mean dimension, and multiple packings. Sbornik. Mathematics, Tome 187 (1996) no. 1, pp. 119-139. http://geodesic.mathdoc.fr/item/SM_1996_187_1_a7/