Hermitian widths, mean dimension, and multiple packings
Sbornik. Mathematics, Tome 187 (1996) no. 1, pp. 119-139 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article is a study of the behaviour of widths describing the approximation properties of subspaces generated by the translates of $N$ fixed functions with respect to some lattice. A connection is established between the approximation characteristics and the geometric properties of $N$-fold packing of Lebesgue sets of a function depending on the metrics of the spaces in which the approximation is carried out. The concept of the mean dimension is introduced, and it is proved that the widths under study converge to the Kolmogorov widths of the same mean dimension.
@article{SM_1996_187_1_a7,
     author = {N. A. Strelkov},
     title = {Hermitian widths, mean dimension, and multiple packings},
     journal = {Sbornik. Mathematics},
     pages = {119--139},
     year = {1996},
     volume = {187},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_1_a7/}
}
TY  - JOUR
AU  - N. A. Strelkov
TI  - Hermitian widths, mean dimension, and multiple packings
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 119
EP  - 139
VL  - 187
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_1_a7/
LA  - en
ID  - SM_1996_187_1_a7
ER  - 
%0 Journal Article
%A N. A. Strelkov
%T Hermitian widths, mean dimension, and multiple packings
%J Sbornik. Mathematics
%D 1996
%P 119-139
%V 187
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1996_187_1_a7/
%G en
%F SM_1996_187_1_a7
N. A. Strelkov. Hermitian widths, mean dimension, and multiple packings. Sbornik. Mathematics, Tome 187 (1996) no. 1, pp. 119-139. http://geodesic.mathdoc.fr/item/SM_1996_187_1_a7/

[1] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi. T. 2. Differentsialnye operatory s postoyannymi koeffitsientami, Mir, M., 1988 | MR

[2] Volevich L. R., Paneyakh B. P., “Nekotorye prostranstva obobschennykh funktsii i teoremy vlozheniya”, UMN, 20:1 (1965), 3–74 | MR | Zbl

[3] Strelkov N. A., “O proektsionno-setochnykh poperechnikakh”, Variatsionno-raznostnye metody v matematicheskoi fizike, OVM AN SSSR, M., 1984, 211–214

[4] Strelkov N. A., “Optimalnye koordinatnye funktsii v proektsionno-raznostnykh metodakh, poperechniki i reshetchatye ukladki”, DAN SSSR, 309:3 (1989), 550–554 | MR

[5] Strelkov N. A., “Proektsionno-setochnye poperechniki i reshetchatye ukladki”, Matem. sb., 182:10 (1991), 1513–1533 | MR

[6] Kassels Dzh. V. S., Vvedenie v geometriyu chisel, Mir, M., 1965 | MR

[7] Ryshkov S. S., “Primenenie metoda nepreryvnykh parametrov v teorii tochechnykh reshetok”, Trudy seminara po diskretnoi matematike i ee prilozheniyam, Izd-vo MGU, M., 1989, 49–52

[8] Groemer H., “Multiple packings and coverings”, Stud. Sci. Math. Hung., 21 (1986), 189–200 | MR | Zbl

[9] Bolle U., “On the density of multiple packings and coverings of convex discs”, Stud. Sci. Math. Hung., 24 (1989), 119–126 | MR | Zbl

[10] Rodzhers K., Ukladki i pokrytiya, Mir, M., 1968 | MR

[11] Few L., “Multiple packing of spheres; A servey”, Proc. Colloquium on Complexity (Copenhagen, 1965), Kobenhavns Univ. Mat. Inst., Copenhagen, 1967, 88–93 | MR

[12] Fejes Toth G., “New results in the theory of packing and covering”, Complexity and its application, eds. P. M. Gruber, J. M. Wills, Birkhauser Verlag, Basel–Boston–Stuttgart, 1983, 318–359 | MR

[13] Yakovlev N. N., “O plotneishei reshetchatoi $8$-upakovke na ploskosti”, Vestnik MGU. Ser. matem., mekh., 1983, no. 5, 8–16 | MR | Zbl

[14] Strang G., Fix G., “A Fourier analysis of the finite element variational method”, Constructive Aspects of Functional Analysis, Edisioni Cremenese, Roma, 1973

[15] Varga R., Funktsionalnyi analiz i teoriya approksimatsii v chislennom analize, Mir, M., 1974 | MR | Zbl

[16] Oben Zh.-P., Priblizhennoe reshenie ellipticheskikh kraevykh zadach, Mir, M., 1977 | MR

[17] Strelkov N. A., “Ob approksimatsii prostranstv tipa S. L. Soboleva”, Vestnik Yaroslavskogo un-ta, 1974, no. 10, 123–156 | MR

[18] Strelkov N. A., “O vybore koordinatnykh funktsii v proektsionno-raznostnykh metodakh”, Zhurn. vychisl. matem. i matem. fiz., 17:6 (1977), 1443–1457 | MR | Zbl

[19] Strelkov N. A., “On the relationship between difference and projection-difference method”, Numer. Anal. and Math. Modelling, Banach Center Publications, 24, 1990, 355–377 | MR | Zbl

[20] Strelkov N. A., “Splain-trigonometricheskie bazisy v $L_2$ i interpolyatsii tselykh funktsii eksponentsialnogo tipa”, Matem. zametki, 32:6 (1982), 835–840 | MR | Zbl

[21] Shennon K., Raboty po teorii informatsii i kibernetike, IL, M., 1963

[22] Kolmogorov A. N., Tikhomirov V. M., “$\varepsilon$-entropiya i $\varepsilon$-emkost mnozhestv v funktsionalnykh prostranstvakh”, UMN, 14:2 (1959), 3–86 | MR

[23] Din Zung, Magaril-Ilyaev G. G., “Zadachi tipa Bernshteina i Favara i srednyaya $\varepsilon$-razmernost nekotorykh klassov funktsii”, DAN SSSR, 249:4 (1979), 783–786 | MR | Zbl

[24] Tikhomirov V. M., “Ob approksimativnykh kharakteristikakh gladkikh funktsii mnogikh peremennykh”, Trudy konferentsii po differentsialnym uravneniyam i vychislitelnoi matematike, Nauka, Novosibirsk, 1980, 183–188 | MR

[25] Din Zung, “Srednyaya $\varepsilon$-razmernost klassa funktsii $B_{G,p}$”, Matem. zametki, 28:5 (1980), 727–736 | MR | Zbl

[26] Magaril-Ilyaev G. G., “$\varphi$-srednie poperechniki klassov funktsii na pryamoi”, UMN, 45:2 (1990), 211–212 | MR | Zbl

[27] Magaril-Ilyaev G. G., “Srednyaya razmernost i poperechniki klassov funktsii na pryamoi”, DAN SSSR, 318:7 (1991), 35–38 | MR | Zbl