Orbital classification of the integrable problems of Lagrange and Goryachev–Chaplygin by the methods of computer analysis
Sbornik. Mathematics, Tome 187 (1996) no. 1, pp. 93-110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In an earlier paper Orel computed the trajectory (or orbital) invariant for the Goryachev–Chaplygin problem. She noted, however, that the investigation of this invariant is beset with insurmountable analytic difficulties. The present paper completes the construction of the trajectory invariant for the Goryachev–Chaplygin problem, as well as for the Lagrange problem, by the methods of computer analysis. Thus the orbital classification question as been solved for these problems. In the paper we also formulate conjectures relating to the Lagrange case, which can serve as a basis for further investigations in this area. The computational algorithms themselves are due to Takahashi.
@article{SM_1996_187_1_a5,
     author = {O. E. Orel and S. Takahashi},
     title = {Orbital classification of the~integrable problems of {Lagrange} and {Goryachev{\textendash}Chaplygin} by the~methods of computer analysis},
     journal = {Sbornik. Mathematics},
     pages = {93--110},
     year = {1996},
     volume = {187},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_1_a5/}
}
TY  - JOUR
AU  - O. E. Orel
AU  - S. Takahashi
TI  - Orbital classification of the integrable problems of Lagrange and Goryachev–Chaplygin by the methods of computer analysis
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 93
EP  - 110
VL  - 187
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_1_a5/
LA  - en
ID  - SM_1996_187_1_a5
ER  - 
%0 Journal Article
%A O. E. Orel
%A S. Takahashi
%T Orbital classification of the integrable problems of Lagrange and Goryachev–Chaplygin by the methods of computer analysis
%J Sbornik. Mathematics
%D 1996
%P 93-110
%V 187
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1996_187_1_a5/
%G en
%F SM_1996_187_1_a5
O. E. Orel; S. Takahashi. Orbital classification of the integrable problems of Lagrange and Goryachev–Chaplygin by the methods of computer analysis. Sbornik. Mathematics, Tome 187 (1996) no. 1, pp. 93-110. http://geodesic.mathdoc.fr/item/SM_1996_187_1_a5/

[1] Bolsinov A. V., Fomenko A. T., “Traektornaya ekvivalentnost integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Teorema klassifikatsii. I; II”, Matem. sb., 185:4 (1994), 27–80 ; 5, 27–78 | MR | Zbl | Zbl

[2] Fomenko A. T., Tsishang Kh., “Kriterii topologicheskoi ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 546–575 | MR | Zbl

[3] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topologicheskaya klassifikatsiya prostykh integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Spisok sistem maloi slozhnosti”, UMN, 45:2 (1990), 49–78 | MR

[4] Orel O. E., “Funktsiya vrascheniya dlya integriruemykh zadach, svodyaschikhsya k uravneniyam Abelya. Traektornaya klassifikatsiya sluchaya Goryacheva–Chaplygina”, Matem. sb., 186:2 (1995), 105–128 | MR | Zbl

[5] Bolsinov A. V., Fomenko A. T., “Traektornaya klassifikatsiya prostykh integriruemykh gamiltonovykh sistem na trekhmernykh poverkhnostyakh postoyannoi energii”, DAN, 332:5 (1993), 553–555 | MR | Zbl

[6] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR

[7] Oshemkov A. A., “Fomenko invariants for the main integrable cases of the rigid body motion equation”, Adv. in Sov. Math., 6 (1991), 67–146 | MR | Zbl

[8] Kharlamov M. P., Topologicheskii analiz integriruemykh zadach dinamiki tverdogo tela, Izd-vo LGU, L., 1988 | MR

[9] Kozlov V. V., Metody kachestvennogo analiza v dinamike tverdogo tela, Izd-vo MGU, M., 1980 | MR | Zbl

[10] Orel O. E., “Topological and orbital analysis of integrable Lagrange and Goryachev–Chaplygin problems”, Computer modelling for visualization, Appendix D, eds. A. T. Fomenko, T. L. Kunii, Springer-Verlag, 1995 (to appear)

[11] Aksenenkova I. M., “Kanonicheskie peremennye ugol–deistvie v zadache o volchke Lagranzha”, Vestnik MGU. Ser. matem., 1981, no. 1, 86–90 | Zbl