Lower bound on the dimensions or irreducible representations of symmetric groups and on the exponents of varieties of Lie algebras
Sbornik. Mathematics, Tome 187 (1996) no. 1, pp. 81-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two main results of this paper are singled out. The first one relates to the representation theory of symmetric groups. The second one deals with varieties of Lie algebras over a field of characteristic zero. The first result can be presented as follows: given a symmetric group of sufficiently large degree $n$, every irreducible representation of it with Young diagram fitting into a square with side $n/k$ is of dimension at least $k^n$. The second result states that there are no varieties of Lie algebras over a field of characteristic zero with lower exponent strictly less than two. At the same time, examples of varieties with exponent two are presented.
@article{SM_1996_187_1_a4,
     author = {S. P. Mishchenko},
     title = {Lower bound on the~dimensions or irreducible representations of symmetric groups and on the~exponents of varieties of {Lie} algebras},
     journal = {Sbornik. Mathematics},
     pages = {81--92},
     year = {1996},
     volume = {187},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_1_a4/}
}
TY  - JOUR
AU  - S. P. Mishchenko
TI  - Lower bound on the dimensions or irreducible representations of symmetric groups and on the exponents of varieties of Lie algebras
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 81
EP  - 92
VL  - 187
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_1_a4/
LA  - en
ID  - SM_1996_187_1_a4
ER  - 
%0 Journal Article
%A S. P. Mishchenko
%T Lower bound on the dimensions or irreducible representations of symmetric groups and on the exponents of varieties of Lie algebras
%J Sbornik. Mathematics
%D 1996
%P 81-92
%V 187
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1996_187_1_a4/
%G en
%F SM_1996_187_1_a4
S. P. Mishchenko. Lower bound on the dimensions or irreducible representations of symmetric groups and on the exponents of varieties of Lie algebras. Sbornik. Mathematics, Tome 187 (1996) no. 1, pp. 81-92. http://geodesic.mathdoc.fr/item/SM_1996_187_1_a4/

[1] Mischenko S. P., “Mnogoobraziya algebr Li so slabym rostom posledovatelnosti korazmernostei”, Vestnik MGU, 1982, no. 5, 63–66 | Zbl

[2] Mischenko S. P., “Rost mnogoobrazii algebr Li”, obzor, UMN, 45:6 (276) (1990), 25–45 | Zbl

[3] Mischenko S. P., “Tozhdestvo engelevosti i ego prilozheniya”, Matem. sb., 121:3 (1983), 423–430 | MR | Zbl

[4] Bakhturin Yu. A., Tozhdestva v algebrakh Li, Nauka, M., 1985 | MR | Zbl

[5] Benediktovich I. I., Zalesskii A. E., “$T$-idealy svobodnoi algebry Li s polinomialnym rostom posledovatelnosti korazmernostei”, Vestsi AN BSSR, 1980, no. 3, 5–10 | MR | Zbl

[6] Volichenko I. B., “O mnogoobraziyakh algebr Li $\mathbf{AN}_2$ nad polem kharakteristiki nul”, DAN BSSR, 25:12 (1981), 1063–1066 | MR | Zbl

[7] Mischenko S. P., “O nekotorykh klassakh algebr Li”, Vestnik MGU. Ser. matem., mekh., 1992, no. 3, 55–57 | Zbl

[8] Mischenko S. P., “O mnogoobraziyakh algebr Li promezhutochnogo rosta”, Vestsi AN BSSR, 1987, no. 2, 42–45 | MR | Zbl

[9] Drenski V. S., “Predstavleniya simmetricheskoi gruppy i mnogoobraziya lineinykh algebr”, Matem. sb., 115:1 (1981), 98–115 | MR | Zbl

[10] Mischenko S. P., “Mnogoobraziya algebr Li s dvustupenno nilpotentnym kommutantom”, Vestsi AN BSSR, 1987, no. 6, 39–43 | Zbl

[11] Volichenko I. B., “Ob odnom mnogoobrazii algebr Li, svyazannom so standartnymi tozhdestvami. I; II”, Vestsi AN BSSR. Ser. fiz.-matem. navuk, 1980, no. 1, 23–30 | MR | Zbl

[12] Higgins P. J., “Lie rings satisfying the Engel condision”, Proc. Cambridge Phil. Soc.: Math. and Phys. Sci., 50 (1954), 8–15 | DOI | MR | Zbl