Right inverse for a~convolution operator in space of germs of analytic functions on connected subsets of $\mathbb C$
Sbornik. Mathematics, Tome 187 (1996) no. 1, pp. 53-80
Voir la notice de l'article provenant de la source Math-Net.Ru
Several general results concerning the existence of a continuous linear right inverse (CLRI) of a continuous linear operator are established. Using these results it is possible to obtain first (in a more general situation) necessary and then sufficient conditions (and in several cases, a test) for the existence of a CLRI in spaces of analytic germs on certain classes of connected sets for the convolution operator $L_b$ whose symbol $b(z)$ is an entire function of order 1 and minimal type.
@article{SM_1996_187_1_a3,
author = {Yu. F. Korobeinik},
title = {Right inverse for a~convolution operator in space of germs of analytic functions on connected subsets of $\mathbb C$},
journal = {Sbornik. Mathematics},
pages = {53--80},
publisher = {mathdoc},
volume = {187},
number = {1},
year = {1996},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1996_187_1_a3/}
}
TY - JOUR AU - Yu. F. Korobeinik TI - Right inverse for a~convolution operator in space of germs of analytic functions on connected subsets of $\mathbb C$ JO - Sbornik. Mathematics PY - 1996 SP - 53 EP - 80 VL - 187 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1996_187_1_a3/ LA - en ID - SM_1996_187_1_a3 ER -
%0 Journal Article %A Yu. F. Korobeinik %T Right inverse for a~convolution operator in space of germs of analytic functions on connected subsets of $\mathbb C$ %J Sbornik. Mathematics %D 1996 %P 53-80 %V 187 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1996_187_1_a3/ %G en %F SM_1996_187_1_a3
Yu. F. Korobeinik. Right inverse for a~convolution operator in space of germs of analytic functions on connected subsets of $\mathbb C$. Sbornik. Mathematics, Tome 187 (1996) no. 1, pp. 53-80. http://geodesic.mathdoc.fr/item/SM_1996_187_1_a3/