Right inverse for a~convolution operator in space of germs of analytic functions on connected subsets of $\mathbb C$
Sbornik. Mathematics, Tome 187 (1996) no. 1, pp. 53-80

Voir la notice de l'article provenant de la source Math-Net.Ru

Several general results concerning the existence of a continuous linear right inverse (CLRI) of a continuous linear operator are established. Using these results it is possible to obtain first (in a more general situation) necessary and then sufficient conditions (and in several cases, a test) for the existence of a CLRI in spaces of analytic germs on certain classes of connected sets for the convolution operator $L_b$ whose symbol $b(z)$ is an entire function of order 1 and minimal type.
@article{SM_1996_187_1_a3,
     author = {Yu. F. Korobeinik},
     title = {Right inverse for a~convolution operator in space of germs of analytic functions on connected subsets of $\mathbb C$},
     journal = {Sbornik. Mathematics},
     pages = {53--80},
     publisher = {mathdoc},
     volume = {187},
     number = {1},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_1_a3/}
}
TY  - JOUR
AU  - Yu. F. Korobeinik
TI  - Right inverse for a~convolution operator in space of germs of analytic functions on connected subsets of $\mathbb C$
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 53
EP  - 80
VL  - 187
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_1_a3/
LA  - en
ID  - SM_1996_187_1_a3
ER  - 
%0 Journal Article
%A Yu. F. Korobeinik
%T Right inverse for a~convolution operator in space of germs of analytic functions on connected subsets of $\mathbb C$
%J Sbornik. Mathematics
%D 1996
%P 53-80
%V 187
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1996_187_1_a3/
%G en
%F SM_1996_187_1_a3
Yu. F. Korobeinik. Right inverse for a~convolution operator in space of germs of analytic functions on connected subsets of $\mathbb C$. Sbornik. Mathematics, Tome 187 (1996) no. 1, pp. 53-80. http://geodesic.mathdoc.fr/item/SM_1996_187_1_a3/