Functional inequalities and generalized capacities
Sbornik. Mathematics, Tome 187 (1996) no. 1, pp. 39-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this criteria were found for the validity of a functional inequality of the form $\|f;Q\| \leqslant C\|\nabla f;P\|$, where $P$ and $Q$ are normed ideal spaces of functions on a domain $\Omega \subset \mathbb R^n$, and the constant $C$ is the same for compactly supported functions $f$ satisfying a Lipschitz condition. Conditions for norm agreement in the space $P$ and $Q$ are given under which the functional inequality in question is equivalent to a geometric inequality relating the $Q$-norms of the indicators and $P$-capacities of compact subset of $\Omega$. Estimates are given and general properties of the capacities are studied.
@article{SM_1996_187_1_a2,
     author = {V. S. Klimov},
     title = {Functional inequalities and generalized capacities},
     journal = {Sbornik. Mathematics},
     pages = {39--52},
     year = {1996},
     volume = {187},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_1_a2/}
}
TY  - JOUR
AU  - V. S. Klimov
TI  - Functional inequalities and generalized capacities
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 39
EP  - 52
VL  - 187
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_1_a2/
LA  - en
ID  - SM_1996_187_1_a2
ER  - 
%0 Journal Article
%A V. S. Klimov
%T Functional inequalities and generalized capacities
%J Sbornik. Mathematics
%D 1996
%P 39-52
%V 187
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1996_187_1_a2/
%G en
%F SM_1996_187_1_a2
V. S. Klimov. Functional inequalities and generalized capacities. Sbornik. Mathematics, Tome 187 (1996) no. 1, pp. 39-52. http://geodesic.mathdoc.fr/item/SM_1996_187_1_a2/

[1] Mazya V. G., “O nekotorykh integralnykh neravenstvakh dlya funktsii mnogikh peremennykh”, Problemy mat. analiza, no. 3, Izd-vo LGU, L., 1972, 33–68

[2] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR | Zbl

[3] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl

[4] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR

[5] Brudnyi Yu. A., Krein S. G., Semenov E. M., “Interpolyatsiya lineinykh operatorov”, Itogi nauki i tekhniki. Matematicheskii analiz, 24, VINITI, M., 1986, 3–163 | MR

[6] Mityagin B. S., Shvarts A. S., “Funktory v kategoriyakh banakhovykh prostranstv”, UMN, 19:2 (1964), 65–130 | MR | Zbl

[7] Zabreiko P. P., “Idealnye prostranstva vektor-funktsii”, Dokl. AN BSSR, 31:4 (1987), 298–301 | MR | Zbl

[8] Zabreiko P. P., Nguen Khong Tkhai, “Teoriya dvoistvennosti idealnykh prostranstv vektor-funktsii”, DAN SSSR, 311:6 (1990), 1296–1299 | Zbl

[9] Rokafellar R. T., Vypuklyi analiz, Mir, M., 1973

[10] Krasnoselskii M. A., Rutitskii Ya. B., Vypuklye funktsii i prostranstva Orlicha, Fizmatgiz, M., 1958 | MR

[11] Levin V. L., Vypuklyi analiz v prostranstvakh izmerimykh funktsii i ego primenenie v matematike i ekonomike, Nauka, M., 1985 | MR

[12] Choquet G., “Theory of capacities”, Ann. Inst. Fourier, 5 (1953), 131–295 | MR

[13] Brelo M., Osnovy klassicheskoi teorii potentsiala, Mir, M., 1964 | MR | Zbl

[14] Karleson L., Izbrannye problemy teorii isklyuchitelnykh mnozhestv, Mir, M., 1971 | MR | Zbl

[15] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[16] Sobolev S. L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974 | MR

[17] Khardi G. G., Littlvud D. E., Polia G., Neravenstva, IL, M., 1948

[18] Klimov V. S., “O perestanovkakh differentsiruemykh funktsii”, Matem. zametki, 9:6 (1971), 629–638 | MR | Zbl

[19] Klimov V. S., “Teoremy vlozheniya i geometricheskie neravenstva”, Izv. AN SSSR. Ser. matem., 40:3 (1976), 645–671 | MR | Zbl

[20] Burago Yu. D., Zalgaller V. A., Geometricheskie neravenstva, Nauka, L., 1980 | MR | Zbl