A priori estimates and smoothness of solutions of a~system of quasi-linear equations that is elliptic in the~Douglis--Nirenberg sense
Sbornik. Mathematics, Tome 187 (1996) no. 1, pp. 15-38

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a Douglis–Nirenberg elliptic system of quasi-linear equations. We solve the problem of the limiting admissible rate of growth of the non-linear terms of the system with respect to their arguments consistent with the possibility of obtaining estimates of the derivatives of a solution in terms of its maximum absolute value. The restrictions on the smoothness of the non-linear terms are minimal and the results are sharp. We construct an example that shows the optimality of the upper bound for the exponent of growth. A priori $L_p$-estimates are obtained both inside the domain for solutions belonging to certain Sobolev spaces. We obtain estimates of the Hölder norms of the derivatives of a solutions. We prove a theorem on a removable isolated singularity of bounded solutions of general elliptic systems of quasi-linear equation. All results are new, even for a single second-order equation.
@article{SM_1996_187_1_a1,
     author = {G. V. Grishina},
     title = {A priori estimates and smoothness of solutions of a~system of quasi-linear equations that is elliptic in {the~Douglis--Nirenberg} sense},
     journal = {Sbornik. Mathematics},
     pages = {15--38},
     publisher = {mathdoc},
     volume = {187},
     number = {1},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_1_a1/}
}
TY  - JOUR
AU  - G. V. Grishina
TI  - A priori estimates and smoothness of solutions of a~system of quasi-linear equations that is elliptic in the~Douglis--Nirenberg sense
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 15
EP  - 38
VL  - 187
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_1_a1/
LA  - en
ID  - SM_1996_187_1_a1
ER  - 
%0 Journal Article
%A G. V. Grishina
%T A priori estimates and smoothness of solutions of a~system of quasi-linear equations that is elliptic in the~Douglis--Nirenberg sense
%J Sbornik. Mathematics
%D 1996
%P 15-38
%V 187
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1996_187_1_a1/
%G en
%F SM_1996_187_1_a1
G. V. Grishina. A priori estimates and smoothness of solutions of a~system of quasi-linear equations that is elliptic in the~Douglis--Nirenberg sense. Sbornik. Mathematics, Tome 187 (1996) no. 1, pp. 15-38. http://geodesic.mathdoc.fr/item/SM_1996_187_1_a1/