A priori estimates and smoothness of solutions of a system of quasi-linear equations that is elliptic in the Douglis–Nirenberg sense
Sbornik. Mathematics, Tome 187 (1996) no. 1, pp. 15-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study a Douglis–Nirenberg elliptic system of quasi-linear equations. We solve the problem of the limiting admissible rate of growth of the non-linear terms of the system with respect to their arguments consistent with the possibility of obtaining estimates of the derivatives of a solution in terms of its maximum absolute value. The restrictions on the smoothness of the non-linear terms are minimal and the results are sharp. We construct an example that shows the optimality of the upper bound for the exponent of growth. A priori $L_p$-estimates are obtained both inside the domain for solutions belonging to certain Sobolev spaces. We obtain estimates of the Hölder norms of the derivatives of a solutions. We prove a theorem on a removable isolated singularity of bounded solutions of general elliptic systems of quasi-linear equation. All results are new, even for a single second-order equation.
@article{SM_1996_187_1_a1,
     author = {G. V. Grishina},
     title = {A priori estimates and smoothness of solutions of a~system of quasi-linear equations that is elliptic in {the~Douglis{\textendash}Nirenberg} sense},
     journal = {Sbornik. Mathematics},
     pages = {15--38},
     year = {1996},
     volume = {187},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_1_a1/}
}
TY  - JOUR
AU  - G. V. Grishina
TI  - A priori estimates and smoothness of solutions of a system of quasi-linear equations that is elliptic in the Douglis–Nirenberg sense
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 15
EP  - 38
VL  - 187
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_1_a1/
LA  - en
ID  - SM_1996_187_1_a1
ER  - 
%0 Journal Article
%A G. V. Grishina
%T A priori estimates and smoothness of solutions of a system of quasi-linear equations that is elliptic in the Douglis–Nirenberg sense
%J Sbornik. Mathematics
%D 1996
%P 15-38
%V 187
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1996_187_1_a1/
%G en
%F SM_1996_187_1_a1
G. V. Grishina. A priori estimates and smoothness of solutions of a system of quasi-linear equations that is elliptic in the Douglis–Nirenberg sense. Sbornik. Mathematics, Tome 187 (1996) no. 1, pp. 15-38. http://geodesic.mathdoc.fr/item/SM_1996_187_1_a1/

[1] Bernshtein S. N., Sobranie sochinenii, T. 3, AN SSSR, M., 1960

[2] Nagumo M., “On principally linear elliptic differential equations of second order”, Osaka Math. J., 6:2 (1954), 207–229 | MR | Zbl

[3] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[4] Skrypnik I. V., Metody issledovaniya nelineinykh ellipticheskikh granichnykh zadach, Nauka, M., 1990 | MR

[5] Pokhozhaev S. I., “O kvazilineinykh ellipticheskikh uravneniyakh vysokogo poryadka”, Differents. uravneniya, 17:1 (1981), 115–121 | MR

[6] Arakcheev S. A., “O nekotorykh klassakh lineinykh i kvazilineinykh uravnenii s summiruemymi koeffitsientami”, Trudy Vsesoyuznoi konf. po uravneniyam s chastnymi proizvodnymi, posvyaschennoi 75-letiyu I. G. Petrovskogo, M., 1978, 299–311

[7] Skrypnik I. V., “Razreshimost i svoistva reshenii nelineinykh ellipticheskikh uravnenii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, VINITI, M., 1976, 131–237

[8] Agmon S., Duglis A., Nirenberg L., Otsenki vblizi granitsy reshenii ellipticheskikh uravnenii v chastnykh proizvodnykh pri obschikh granichnykh usloviyakh, T. 1, IL, M., 1962

[9] Agmon S., Douglis A., Nirenberg L., “Estimates near the boundary for the solutions of elliptic differential equations, satisfying general boundary values, II”, Comm. Pure Appl. Math., 17:1 (1964), 35–92 | DOI | MR | Zbl

[10] Galiardo E., “Ulteriori proprieta di alcune classi di funsioni in piu variabili”, Ricerche di Math. Napoli, 8:1 (1959), 24–51 | MR

[11] Nirenberg L., “On elliptic partial differential equations”, Annal. Scuola Norm. Sup. Piza, 13 (1959), 115–162 | MR

[12] Mazya V. G., “Ob ustranimykh osobennostyakh ogranichennykh reshenii kvazilineinykh ellipticheskikh uravnenii lyubogo poryadka”, Zap. nauch. seminarov LOMI AN SSSR, 27, Nauka, L., 1972, 116–130 | MR | Zbl

[13] Sobolev S. L., “Ob odnoi teoreme funktsionalnogo analiza”, Matem. sb., 4:3 (1938), 471–497 | Zbl

[14] Ion F., Ploskie volny i sfericheskie srednie v primenenii k differentsialnym uravneniyam s chastnymi proizvodnymi, IL, M., 1958

[15] Calderon A. P., Zigmund A., “On singular integrals”, Amer. J. Math., 78 (1956), 289–309 | DOI | MR | Zbl

[16] Agranovich M. S., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, UMN, 19:3 (1964), 53–161 | MR | Zbl

[17] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. MMO, 16, URSS, M., 1967, 27–92

[18] Mazya V. G., Plamenevskii B. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblastyakh s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI | MR | Zbl