@article{SM_1996_187_1_a0,
author = {I. A. Brigadnov},
title = {Existence theorems for boundary-value problems of hyperelasticity},
journal = {Sbornik. Mathematics},
pages = {1--14},
year = {1996},
volume = {187},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1996_187_1_a0/}
}
I. A. Brigadnov. Existence theorems for boundary-value problems of hyperelasticity. Sbornik. Mathematics, Tome 187 (1996) no. 1, pp. 1-14. http://geodesic.mathdoc.fr/item/SM_1996_187_1_a0/
[1] Zubov L. M., “Variatsionnye printsipy nelineinoi teorii uprugosti”, PMM, 35:3 (1971), 406–410 | MR | Zbl
[2] Lure A. I., Nelineinaya teoriya uprugosti, Nauka, M., 1980 | MR
[3] Syarle F., Matematicheskaya teoriya uprugosti, Mir, M., 1992
[4] Ball J. M., “Convexity conditions and existence theorems in nonlinear elasticity”, Arch. Rational Mech. Anal., 63 (1977), 337–403 | DOI | MR | Zbl
[5] Dacorogna B., “Remarques sur les notions de polyconvexité, quasi-convexité et convexité de rang $1$”, J. Math. pures et appl., 64 (1985), 403–438 | MR | Zbl
[6] Morrey C. B., “Quasiconvexity and the lower semicontinuity of multiple integrals”, Pacific J. Math., 2 (1952), 25–53 | MR | Zbl
[7] Anzellotti G., “The Euler equation for functional with linear growth”, Trans. Amer. Math. Soc., 290:2 (1985), 483–501 | DOI | MR | Zbl
[8] Brigadnov I. A., “O suschestvovanii predelnoi nagruzki v nekotorykh zadachakh giperuprugosti”, Izv. AN. MTT, 1993, no. 5, 46–51
[9] Giaquinta M., “On the Dirichlet problem for sorfaces of prescribed mean curvature”, Manuscripta Math., 12 (1974), 73–86 | DOI | MR | Zbl
[10] Dzhusti E., Minimalnye poverkhnosti i funktsii ogranichennoi variatsii, Mir, M., 1989 | MR
[11] Seregin G. A., “O korrektnosti variatsionnykh problem mekhaniki idealno-uprugoplasticheskikh sred”, DAN SSSR, 276:1 (1984), 71–75 | MR | Zbl
[12] Temam R., Matematicheskie zadachi teorii plastichnosti, Nauka, M., 1991 | MR | Zbl
[13] Antman S. S., “Regular and singular problems for large elastic deformations of tubes, wedges and cylinders”, Arch. Rational Mech. Anal., 83 (1983), 1–52 | DOI | MR | Zbl
[14] Ball J. M., Murat F., “$W^{1,p}$-quasiconvexity and variational problems for multiple integrals”, J. Funct. Anal., 58 (1984), 225–253 | DOI | MR | Zbl
[15] Chernykh K. F., Litvinenkova Z. N., Teoriya bolshikh uprugikh deformatsii, Izd-vo LGU, L., 1988
[16] Bartenev G. M., Zelenev Yu. V., Kurs fiziki polimerov, Khimiya, L., 1976
[17] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR
[18] Repin S. I., “Variatsionno-raznostnyi metod resheniya zadach s funktsionalami lineinogo rosta”, Zhurn. vychislit. matem. i matem. fiziki, 29:5 (1989), 693–708 | MR
[19] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR
[20] Morrey C. B., Multiple integrals in the calculus of variations, Springer-Verlag, Berlin, 1966 | MR | Zbl
[21] Kufner A., Fuchik S., Nelineinye differentsialnye uravneniya, Nauka, M., 1988 | MR
[22] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR
[23] Ogden R. W., “Large deformation isotropic elasticity: on the correlation of theory and experiment for compressible rubber-like solids”, Proc. Roy. Soc. London. A, 328 (1972), 576–583
[24] Sharda S. C., Tschoegl N. W., “Astrain energy density function for compressible rubber-like materials”, Trans. Soc. Rheology, 20 (1976), 361–372 | DOI
[25] Acerbi E., Fusko N., “Semicontinuity problems in the calculus of variations”, Arch. Rational Mech. Anal., 86:2 (1984), 125–145 | DOI | MR | Zbl
[26] Dakoronya B., “Slabaya nepreryvnost i slabaya polunepreryvnost snizu nelineinykh funktsionalov”, UMN, 44:4 (268) (1989), 35–98 | MR
[27] Van Hove L., “Sur l'extension de la condition de Legendre du calcul des variations aux integrales multiples a plusieurs fonctions inconnues”, Proc. Koninkl. Ned. Akad. Wetenschap., 50 (1947), 18–23 | MR | Zbl