Existence theorems for boundary-value problems of hyperelasticity
Sbornik. Mathematics, Tome 187 (1996) no. 1, pp. 1-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The variational formulation of the boundary-value problem of elastostatics for hyperelastic materials are considered. The existence of a solution on the space $W^{1,p}(\Omega,\mathbb R^3)$, $p>1$, is proved for standard outside influences under the most general assumptions on the potential with superlinear growth in the modulus of the matrix argument. Counterexamples are given showing that the condition of coercivity is best possible. In the proof of the existence theorem the weak convergence of the determinants of the gradients of the maps for the minimizing sequence is not used. This enable us to generalize significantly Ball's results. The condition of preservation of orientation (or of incompressibility) almost everywhere in the domain for a global minimizer is proved directly.
@article{SM_1996_187_1_a0,
     author = {I. A. Brigadnov},
     title = {Existence theorems for boundary-value problems of hyperelasticity},
     journal = {Sbornik. Mathematics},
     pages = {1--14},
     year = {1996},
     volume = {187},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_1_a0/}
}
TY  - JOUR
AU  - I. A. Brigadnov
TI  - Existence theorems for boundary-value problems of hyperelasticity
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 1
EP  - 14
VL  - 187
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_1_a0/
LA  - en
ID  - SM_1996_187_1_a0
ER  - 
%0 Journal Article
%A I. A. Brigadnov
%T Existence theorems for boundary-value problems of hyperelasticity
%J Sbornik. Mathematics
%D 1996
%P 1-14
%V 187
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1996_187_1_a0/
%G en
%F SM_1996_187_1_a0
I. A. Brigadnov. Existence theorems for boundary-value problems of hyperelasticity. Sbornik. Mathematics, Tome 187 (1996) no. 1, pp. 1-14. http://geodesic.mathdoc.fr/item/SM_1996_187_1_a0/

[1] Zubov L. M., “Variatsionnye printsipy nelineinoi teorii uprugosti”, PMM, 35:3 (1971), 406–410 | MR | Zbl

[2] Lure A. I., Nelineinaya teoriya uprugosti, Nauka, M., 1980 | MR

[3] Syarle F., Matematicheskaya teoriya uprugosti, Mir, M., 1992

[4] Ball J. M., “Convexity conditions and existence theorems in nonlinear elasticity”, Arch. Rational Mech. Anal., 63 (1977), 337–403 | DOI | MR | Zbl

[5] Dacorogna B., “Remarques sur les notions de polyconvexité, quasi-convexité et convexité de rang $1$”, J. Math. pures et appl., 64 (1985), 403–438 | MR | Zbl

[6] Morrey C. B., “Quasiconvexity and the lower semicontinuity of multiple integrals”, Pacific J. Math., 2 (1952), 25–53 | MR | Zbl

[7] Anzellotti G., “The Euler equation for functional with linear growth”, Trans. Amer. Math. Soc., 290:2 (1985), 483–501 | DOI | MR | Zbl

[8] Brigadnov I. A., “O suschestvovanii predelnoi nagruzki v nekotorykh zadachakh giperuprugosti”, Izv. AN. MTT, 1993, no. 5, 46–51

[9] Giaquinta M., “On the Dirichlet problem for sorfaces of prescribed mean curvature”, Manuscripta Math., 12 (1974), 73–86 | DOI | MR | Zbl

[10] Dzhusti E., Minimalnye poverkhnosti i funktsii ogranichennoi variatsii, Mir, M., 1989 | MR

[11] Seregin G. A., “O korrektnosti variatsionnykh problem mekhaniki idealno-uprugoplasticheskikh sred”, DAN SSSR, 276:1 (1984), 71–75 | MR | Zbl

[12] Temam R., Matematicheskie zadachi teorii plastichnosti, Nauka, M., 1991 | MR | Zbl

[13] Antman S. S., “Regular and singular problems for large elastic deformations of tubes, wedges and cylinders”, Arch. Rational Mech. Anal., 83 (1983), 1–52 | DOI | MR | Zbl

[14] Ball J. M., Murat F., “$W^{1,p}$-quasiconvexity and variational problems for multiple integrals”, J. Funct. Anal., 58 (1984), 225–253 | DOI | MR | Zbl

[15] Chernykh K. F., Litvinenkova Z. N., Teoriya bolshikh uprugikh deformatsii, Izd-vo LGU, L., 1988

[16] Bartenev G. M., Zelenev Yu. V., Kurs fiziki polimerov, Khimiya, L., 1976

[17] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[18] Repin S. I., “Variatsionno-raznostnyi metod resheniya zadach s funktsionalami lineinogo rosta”, Zhurn. vychislit. matem. i matem. fiziki, 29:5 (1989), 693–708 | MR

[19] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR

[20] Morrey C. B., Multiple integrals in the calculus of variations, Springer-Verlag, Berlin, 1966 | MR | Zbl

[21] Kufner A., Fuchik S., Nelineinye differentsialnye uravneniya, Nauka, M., 1988 | MR

[22] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[23] Ogden R. W., “Large deformation isotropic elasticity: on the correlation of theory and experiment for compressible rubber-like solids”, Proc. Roy. Soc. London. A, 328 (1972), 576–583

[24] Sharda S. C., Tschoegl N. W., “Astrain energy density function for compressible rubber-like materials”, Trans. Soc. Rheology, 20 (1976), 361–372 | DOI

[25] Acerbi E., Fusko N., “Semicontinuity problems in the calculus of variations”, Arch. Rational Mech. Anal., 86:2 (1984), 125–145 | DOI | MR | Zbl

[26] Dakoronya B., “Slabaya nepreryvnost i slabaya polunepreryvnost snizu nelineinykh funktsionalov”, UMN, 44:4 (268) (1989), 35–98 | MR

[27] Van Hove L., “Sur l'extension de la condition de Legendre du calcul des variations aux integrales multiples a plusieurs fonctions inconnues”, Proc. Koninkl. Ned. Akad. Wetenschap., 50 (1947), 18–23 | MR | Zbl