Direct sums of distributive modules
Sbornik. Mathematics, Tome 187 (1996) no. 12, pp. 1869-1887

Voir la notice de l'article provenant de la source Math-Net.Ru

A module is said to be distributive if the lattice of all its submodules is distributive. A direct sum of distributive modules is called a semidistributive module. It is proved that the prime radical of the ring of endomorphisms of a finite direct sum of distributive modules contains all one-sided nilideals of the ring of endomorphisms of this module. A semiprime ring with the maximal condition for right annihilators that decomposes into a direct sum of distributive right ideals is a finite direct product of prime rings.
@article{SM_1996_187_12_a5,
     author = {A. A. Tuganbaev},
     title = {Direct sums of distributive modules},
     journal = {Sbornik. Mathematics},
     pages = {1869--1887},
     publisher = {mathdoc},
     volume = {187},
     number = {12},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_12_a5/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Direct sums of distributive modules
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 1869
EP  - 1887
VL  - 187
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_12_a5/
LA  - en
ID  - SM_1996_187_12_a5
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Direct sums of distributive modules
%J Sbornik. Mathematics
%D 1996
%P 1869-1887
%V 187
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1996_187_12_a5/
%G en
%F SM_1996_187_12_a5
A. A. Tuganbaev. Direct sums of distributive modules. Sbornik. Mathematics, Tome 187 (1996) no. 12, pp. 1869-1887. http://geodesic.mathdoc.fr/item/SM_1996_187_12_a5/