Direct sums of distributive modules
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 187 (1996) no. 12, pp. 1869-1887
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A module is said to be distributive if the lattice of all its submodules is distributive. A direct sum of distributive modules is called a semidistributive module. It is proved  that the prime radical of the ring of endomorphisms of a finite direct sum of distributive modules contains all one-sided nilideals of the ring of endomorphisms of this module. A semiprime ring with the maximal condition for right annihilators that decomposes into a direct sum of distributive right ideals is a finite direct product of prime rings.
			
            
            
            
          
        
      @article{SM_1996_187_12_a5,
     author = {A. A. Tuganbaev},
     title = {Direct sums of distributive modules},
     journal = {Sbornik. Mathematics},
     pages = {1869--1887},
     publisher = {mathdoc},
     volume = {187},
     number = {12},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_12_a5/}
}
                      
                      
                    A. A. Tuganbaev. Direct sums of distributive modules. Sbornik. Mathematics, Tome 187 (1996) no. 12, pp. 1869-1887. http://geodesic.mathdoc.fr/item/SM_1996_187_12_a5/
