Direct sums of distributive modules
Sbornik. Mathematics, Tome 187 (1996) no. 12, pp. 1869-1887 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A module is said to be distributive if the lattice of all its submodules is distributive. A direct sum of distributive modules is called a semidistributive module. It is proved that the prime radical of the ring of endomorphisms of a finite direct sum of distributive modules contains all one-sided nilideals of the ring of endomorphisms of this module. A semiprime ring with the maximal condition for right annihilators that decomposes into a direct sum of distributive right ideals is a finite direct product of prime rings.
@article{SM_1996_187_12_a5,
     author = {A. A. Tuganbaev},
     title = {Direct sums of distributive modules},
     journal = {Sbornik. Mathematics},
     pages = {1869--1887},
     year = {1996},
     volume = {187},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_12_a5/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Direct sums of distributive modules
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 1869
EP  - 1887
VL  - 187
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_12_a5/
LA  - en
ID  - SM_1996_187_12_a5
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Direct sums of distributive modules
%J Sbornik. Mathematics
%D 1996
%P 1869-1887
%V 187
%N 12
%U http://geodesic.mathdoc.fr/item/SM_1996_187_12_a5/
%G en
%F SM_1996_187_12_a5
A. A. Tuganbaev. Direct sums of distributive modules. Sbornik. Mathematics, Tome 187 (1996) no. 12, pp. 1869-1887. http://geodesic.mathdoc.fr/item/SM_1996_187_12_a5/

[1] Tuganbaev A. A., “Koltsa s ploskimi pravymi idealami i distributivnye koltsa”, Matem. zametki, 38:2 (1985), 218–228 | MR | Zbl

[2] Mazurek R., Puczylowski E., “On nilpotent elements of distributive rings”, Comm. Algebra, 18:2 (1990), 463–471 | DOI | MR | Zbl

[3] Wright Mary H., “Right locally distributive rings”, Ring Theory (Granville, OH, 1992), World Sci. Publ., River Edge, NJ, 1993, 350–357 | MR | Zbl

[4] Gordon R., Small L. W., “Piecewise domains”, J. Algebra, 23:3 (1972), 553–564 | DOI | MR | Zbl

[5] Andrunakievich V. A., Ryabukhin Yu. M., Radikaly algebr i strukturnaya teoriya, Nauka, M., 1979 | MR

[6] Kon P., Svobodnye koltsa i ikh svyazi, Mir, M., 1975 | MR

[7] Goodearl K. R., Von Neumann regular rings, Pitman, London, 1979 | MR | Zbl

[8] Stenström B., Rings of quotients: an introduction to methods of ring theory, Springer-Verlag, Berlin, 1975 | MR | Zbl

[9] Feis K., Algebra: koltsa, moduli i kategorii, T. 1, Mir, M., 1977

[10] Gordon R., Robson J. C., “Krull dimension”, Mem. Amer. Math. Soc., 133 (1973), 1–78 | MR

[11] Rowen L. H., Ring theory. Student edition, Academic Press, Boston, 1991 | MR | Zbl

[12] Kirichenko V. V., “Obobschenno odnoryadnye koltsa”, Matem. sb., 99:4 (1976), 559–581 | MR | Zbl