On totally geodesic embeddings of 7-dimensional manifolds of positive sectional curvature
Sbornik. Mathematics, Tome 187 (1996) no. 12, pp. 1853-1867 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Totally geodesic embeddings of an infinite series of 7-dimensional manifolds in 13-dimensional manifolds of positive sectional curvature are constructed in this paper. The topology of these embeddings is studied and the possibility of constructing new many-dimensional examples of manifolds of positive curvature is discussed.
@article{SM_1996_187_12_a4,
     author = {I. A. Taimanov},
     title = {On totally geodesic embeddings of 7-dimensional manifolds of positive sectional curvature},
     journal = {Sbornik. Mathematics},
     pages = {1853--1867},
     year = {1996},
     volume = {187},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_12_a4/}
}
TY  - JOUR
AU  - I. A. Taimanov
TI  - On totally geodesic embeddings of 7-dimensional manifolds of positive sectional curvature
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 1853
EP  - 1867
VL  - 187
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_12_a4/
LA  - en
ID  - SM_1996_187_12_a4
ER  - 
%0 Journal Article
%A I. A. Taimanov
%T On totally geodesic embeddings of 7-dimensional manifolds of positive sectional curvature
%J Sbornik. Mathematics
%D 1996
%P 1853-1867
%V 187
%N 12
%U http://geodesic.mathdoc.fr/item/SM_1996_187_12_a4/
%G en
%F SM_1996_187_12_a4
I. A. Taimanov. On totally geodesic embeddings of 7-dimensional manifolds of positive sectional curvature. Sbornik. Mathematics, Tome 187 (1996) no. 12, pp. 1853-1867. http://geodesic.mathdoc.fr/item/SM_1996_187_12_a4/

[1] Berger M., “Les varietes homogenes normales simplement connexes a courbure strictment positive”, Ann. Scuola Norm. Sup. Pisa, 15 (1961), 179–216 | MR

[2] Aloff S., Wallach N. R., “An infinite family of distinct 7-manifolds admitting positively curved Riemannian structures”, Bull. Amer. Math. Soc., 81 (1975), 93–97 | DOI | MR | Zbl

[3] Eschenburg J.-H., “New examples of manifolds with strictly positive curvature”, Invent. Math., 66 (1982), 469–480 | DOI | MR | Zbl

[4] Eschenburg J.-H., “Inhomogeneous spaces of positive curvature”, Differential Geom. Appl., 2 (1992), 123–132 | DOI | MR | Zbl

[5] Bazaikin Ya. V., “Ob odnom semeistve 13-mernykh zamknutykh rimanovykh mnogoobrazii polozhitelnoi krivizny”, Sib. matem. zhurn., 37 (1996), 1219–1237 | MR | Zbl

[6] Gromoll D., Meyer W., “An exotic sphere with nonnegative sectional curvature”, Ann. of Math., 100 (1974), 401–406 | DOI | MR | Zbl

[7] Kreck M., Stolz S., “Some nondiffeomorphic homeomorphic homogeneous 7-manifolds with positive sectional curvature”, J. Differential Geom., 33 (1991), 465–486 | MR | Zbl

[8] Heintze E., “The curvature of $\operatorname{SU}(5)/(\operatorname{Sp}(2)\times S^1)$”, Invent. Math., 13 (1971), 205–212 | DOI | MR | Zbl

[9] Huang H. M., “Some remarks on the pinching problems”, Bull. Inst. Math. Acad. Sinica, 9 (1981), 321–340 | MR | Zbl

[10] Abresch U., Meyer W. T., “Injectivity radius estimates and sphere theorems”, Proc. of MSRI (to appear) | MR

[11] Wallach N., “Compact homogeneous Riemannian manifolds with strictly positive curvature”, Ann. of Math., 96 (1972), 277–295 | DOI | MR | Zbl

[12] Valiev F. M., “Tochnye otsenki sektsionnykh krivizn odnorodnykh rimanovykh metrik na prostranstvakh Uollacha”, Sib. matem. zhurn., 20 (1979), 248–262 | MR | Zbl