@article{SM_1996_187_12_a3,
author = {V. N. Sorokin},
title = {A transcendence measure for $\pi^2$},
journal = {Sbornik. Mathematics},
pages = {1819--1852},
year = {1996},
volume = {187},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1996_187_12_a3/}
}
V. N. Sorokin. A transcendence measure for $\pi^2$. Sbornik. Mathematics, Tome 187 (1996) no. 12, pp. 1819-1852. http://geodesic.mathdoc.fr/item/SM_1996_187_12_a3/
[1] Shidlovskii A. B., Diofantovy priblizheniya i transtsendentnye chisla, Izd-vo MGU, M., 1982 | MR
[2] Mahler K., “Zur Approximation der Exponentialfunktion und des Logarithmus”, J. Reine Angew Math., 166 (1932), 118–150
[3] Mahler K., “On the approximation of logarithms of algebraic numbers”, Philos. Trans. Roy. Soc. London Ser. A, 245 (1953), 371–398 | DOI | MR | Zbl
[4] Mahler K., “Lectures on Transcendental Numbers”, Proc. Sympos. Pure Math., 20 (1971), 248–274 | MR | Zbl
[5] Nesterenko Yu. V., “O chisle $\pi$”, Vestn. MGU. Ser. 1, matem., mekh., 1987, no. 3, 7–10 | MR | Zbl
[6] Nikishin E. M., “O sovmestnykh approksimatsiyakh Pade”, Matem. sb., 113 (155):4 (1980), 499–519 | MR | Zbl
[7] Beukers F., “Pade approximations in number theory”, Lecture Notes in Math., 888, 1981, 90–99 | MR | Zbl
[8] Beukers F., “A note on the irrationality of $\zeta(2)$ and $\zeta(3)$”, Bull. London Math. Soc., 11:33 (1978), 268–272 | MR
[9] Sorokin V. N., “Approksimatsii Ermita–Pade dlya sistem Nikishina i irratsionalnost $\zeta(3)$”, UMN, 49:2 (1994), 167–168 | MR | Zbl
[10] Feldman N. I., “O mere transtsendentnosti chisla $\pi$”, Izv. AN SSSR. Ser. matem., 24:3 (1960), 357–368 | MR