A transcendence measure for $\pi^2$
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 187 (1996) no. 12, pp. 1819-1852
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A new proof of the fact that $\pi^2$ is transcendental is proposed. A modification of Hermite's method for an expressly constructed Nikishin system is used. The Beukers integral, which was previously used to prove Apéry's theorem on the irrationality of $\zeta (2)$ and $\zeta (3)$ is a special case of this construction.
			
            
            
            
          
        
      @article{SM_1996_187_12_a3,
     author = {V. N. Sorokin},
     title = {A transcendence measure for $\pi^2$},
     journal = {Sbornik. Mathematics},
     pages = {1819--1852},
     publisher = {mathdoc},
     volume = {187},
     number = {12},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_12_a3/}
}
                      
                      
                    V. N. Sorokin. A transcendence measure for $\pi^2$. Sbornik. Mathematics, Tome 187 (1996) no. 12, pp. 1819-1852. http://geodesic.mathdoc.fr/item/SM_1996_187_12_a3/
