A transcendence measure for $\pi^2$
Sbornik. Mathematics, Tome 187 (1996) no. 12, pp. 1819-1852 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new proof of the fact that $\pi^2$ is transcendental is proposed. A modification of Hermite's method for an expressly constructed Nikishin system is used. The Beukers integral, which was previously used to prove Apéry's theorem on the irrationality of $\zeta (2)$ and $\zeta (3)$ is a special case of this construction.
@article{SM_1996_187_12_a3,
     author = {V. N. Sorokin},
     title = {A transcendence measure for $\pi^2$},
     journal = {Sbornik. Mathematics},
     pages = {1819--1852},
     year = {1996},
     volume = {187},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_12_a3/}
}
TY  - JOUR
AU  - V. N. Sorokin
TI  - A transcendence measure for $\pi^2$
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 1819
EP  - 1852
VL  - 187
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_12_a3/
LA  - en
ID  - SM_1996_187_12_a3
ER  - 
%0 Journal Article
%A V. N. Sorokin
%T A transcendence measure for $\pi^2$
%J Sbornik. Mathematics
%D 1996
%P 1819-1852
%V 187
%N 12
%U http://geodesic.mathdoc.fr/item/SM_1996_187_12_a3/
%G en
%F SM_1996_187_12_a3
V. N. Sorokin. A transcendence measure for $\pi^2$. Sbornik. Mathematics, Tome 187 (1996) no. 12, pp. 1819-1852. http://geodesic.mathdoc.fr/item/SM_1996_187_12_a3/

[1] Shidlovskii A. B., Diofantovy priblizheniya i transtsendentnye chisla, Izd-vo MGU, M., 1982 | MR

[2] Mahler K., “Zur Approximation der Exponentialfunktion und des Logarithmus”, J. Reine Angew Math., 166 (1932), 118–150

[3] Mahler K., “On the approximation of logarithms of algebraic numbers”, Philos. Trans. Roy. Soc. London Ser. A, 245 (1953), 371–398 | DOI | MR | Zbl

[4] Mahler K., “Lectures on Transcendental Numbers”, Proc. Sympos. Pure Math., 20 (1971), 248–274 | MR | Zbl

[5] Nesterenko Yu. V., “O chisle $\pi$”, Vestn. MGU. Ser. 1, matem., mekh., 1987, no. 3, 7–10 | MR | Zbl

[6] Nikishin E. M., “O sovmestnykh approksimatsiyakh Pade”, Matem. sb., 113 (155):4 (1980), 499–519 | MR | Zbl

[7] Beukers F., “Pade approximations in number theory”, Lecture Notes in Math., 888, 1981, 90–99 | MR | Zbl

[8] Beukers F., “A note on the irrationality of $\zeta(2)$ and $\zeta(3)$”, Bull. London Math. Soc., 11:33 (1978), 268–272 | MR

[9] Sorokin V. N., “Approksimatsii Ermita–Pade dlya sistem Nikishina i irratsionalnost $\zeta(3)$”, UMN, 49:2 (1994), 167–168 | MR | Zbl

[10] Feldman N. I., “O mere transtsendentnosti chisla $\pi$”, Izv. AN SSSR. Ser. matem., 24:3 (1960), 357–368 | MR