The trajectory attractor of a~non-linear elliptic system in a~cylindrical domain
Sbornik. Mathematics, Tome 187 (1996) no. 12, pp. 1755-1789
Voir la notice de l'article provenant de la source Math-Net.Ru
In the half-cylinder $\Omega _+=\mathbb R_+\times \omega$, $\omega \in \mathbb R^n$, we study a second-order system of elliptic equations containing a non-linear function $f(u,x_0,x')=(f^1,\dots ,f^k)$ and right-hand side $g(x_0,x')=(g^1,\dots ,g^k)$, $x_0\in \mathbb R_+$, $x'\in \omega$. If these functions satisfy certain conditions, then it is proved that the first boundary-value problem for this system has at least one solution belonging to the space $[H_{2,p}^{\text {loc}}(\Omega _+)]^k$, $p>n+1$. We study the behaviour of the solutions $u(x_0,x')$ of this system a $x_0\to +\infty$. Along with the original system we study the family of systems obtained from it through shifting with respect to $x_0$ by all $\forall \,h$, $h\geqslant 0$. A semigroup $\{T(h),\ h\geqslant 0\}$, $T(h)u(x_0,\,\cdot \,)=u(x_0+h,\,\cdot \,)$ acts on the set of solutions $K^+$ of these systems of equations. It is proved that this semigroup has a trajectory attractor $\mathbb A$ consisting of the solutions $v(x_0,x')$ in $K^+$ that admit a bounded extension to the entire cylinder $\Omega =\mathbb R\times \omega$. Solutions $u(x_0,x')\in K^+$ are attracted by the attractor $\mathbb A$ as $x_0\to +\infty$. We give a number of applications and consider some questions of the theory of perturbations of the original system of equations.
@article{SM_1996_187_12_a1,
author = {M. I. Vishik and S. V. Zelik},
title = {The trajectory attractor of a~non-linear elliptic system in a~cylindrical domain},
journal = {Sbornik. Mathematics},
pages = {1755--1789},
publisher = {mathdoc},
volume = {187},
number = {12},
year = {1996},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1996_187_12_a1/}
}
TY - JOUR AU - M. I. Vishik AU - S. V. Zelik TI - The trajectory attractor of a~non-linear elliptic system in a~cylindrical domain JO - Sbornik. Mathematics PY - 1996 SP - 1755 EP - 1789 VL - 187 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1996_187_12_a1/ LA - en ID - SM_1996_187_12_a1 ER -
M. I. Vishik; S. V. Zelik. The trajectory attractor of a~non-linear elliptic system in a~cylindrical domain. Sbornik. Mathematics, Tome 187 (1996) no. 12, pp. 1755-1789. http://geodesic.mathdoc.fr/item/SM_1996_187_12_a1/