Number of limit cycles of the~quotient system of the $n$-dimensional Fuller problem
Sbornik. Mathematics, Tome 187 (1996) no. 12, pp. 1737-1753

Voir la notice de l'article provenant de la source Math-Net.Ru

The number of limit cycles of the quotient system of the $n$-dimensional Fuller problem (that is, the number of one-parameter families of self-similar solutions of the equation $y^{(2n)}=(-1)^{n+1}\operatorname {sgn}y$) is proved to be equal to $[n/2]$.
@article{SM_1996_187_12_a0,
     author = {V. F. Borisov},
     title = {Number of limit cycles of the~quotient system of the $n$-dimensional {Fuller} problem},
     journal = {Sbornik. Mathematics},
     pages = {1737--1753},
     publisher = {mathdoc},
     volume = {187},
     number = {12},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_12_a0/}
}
TY  - JOUR
AU  - V. F. Borisov
TI  - Number of limit cycles of the~quotient system of the $n$-dimensional Fuller problem
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 1737
EP  - 1753
VL  - 187
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_12_a0/
LA  - en
ID  - SM_1996_187_12_a0
ER  - 
%0 Journal Article
%A V. F. Borisov
%T Number of limit cycles of the~quotient system of the $n$-dimensional Fuller problem
%J Sbornik. Mathematics
%D 1996
%P 1737-1753
%V 187
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1996_187_12_a0/
%G en
%F SM_1996_187_12_a0
V. F. Borisov. Number of limit cycles of the~quotient system of the $n$-dimensional Fuller problem. Sbornik. Mathematics, Tome 187 (1996) no. 12, pp. 1737-1753. http://geodesic.mathdoc.fr/item/SM_1996_187_12_a0/