Number of limit cycles of the~quotient system of the $n$-dimensional Fuller problem
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 187 (1996) no. 12, pp. 1737-1753
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The number of limit cycles of the quotient system of the $n$-dimensional Fuller problem (that is, the number of one-parameter families of self-similar solutions of the equation  $y^{(2n)}=(-1)^{n+1}\operatorname {sgn}y$) is proved to be equal to $[n/2]$.
			
            
            
            
          
        
      @article{SM_1996_187_12_a0,
     author = {V. F. Borisov},
     title = {Number of limit cycles of the~quotient system of the $n$-dimensional {Fuller} problem},
     journal = {Sbornik. Mathematics},
     pages = {1737--1753},
     publisher = {mathdoc},
     volume = {187},
     number = {12},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_12_a0/}
}
                      
                      
                    V. F. Borisov. Number of limit cycles of the~quotient system of the $n$-dimensional Fuller problem. Sbornik. Mathematics, Tome 187 (1996) no. 12, pp. 1737-1753. http://geodesic.mathdoc.fr/item/SM_1996_187_12_a0/
