Relative elliptic theory and the~Sobolev problem
Sbornik. Mathematics, Tome 187 (1996) no. 11, pp. 1691-1720

Voir la notice de l'article provenant de la source Math-Net.Ru

An operator algebra associated with a smooth embedding $i \colon X\hookrightarrow M$ is constructed. For elliptic elements of this algebra a finiteness theorem (the Fredholm property) is established, and the index is computed. A connection with Sobolev problems is shown.
@article{SM_1996_187_11_a4,
     author = {B. Yu. Sternin and V. E. Shatalov},
     title = {Relative elliptic theory and {the~Sobolev} problem},
     journal = {Sbornik. Mathematics},
     pages = {1691--1720},
     publisher = {mathdoc},
     volume = {187},
     number = {11},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_11_a4/}
}
TY  - JOUR
AU  - B. Yu. Sternin
AU  - V. E. Shatalov
TI  - Relative elliptic theory and the~Sobolev problem
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 1691
EP  - 1720
VL  - 187
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_11_a4/
LA  - en
ID  - SM_1996_187_11_a4
ER  - 
%0 Journal Article
%A B. Yu. Sternin
%A V. E. Shatalov
%T Relative elliptic theory and the~Sobolev problem
%J Sbornik. Mathematics
%D 1996
%P 1691-1720
%V 187
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1996_187_11_a4/
%G en
%F SM_1996_187_11_a4
B. Yu. Sternin; V. E. Shatalov. Relative elliptic theory and the~Sobolev problem. Sbornik. Mathematics, Tome 187 (1996) no. 11, pp. 1691-1720. http://geodesic.mathdoc.fr/item/SM_1996_187_11_a4/