Relative elliptic theory and the~Sobolev problem
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 187 (1996) no. 11, pp. 1691-1720
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			An operator algebra associated with a smooth embedding $i \colon X\hookrightarrow M$ is constructed. For elliptic elements of this algebra a finiteness theorem (the Fredholm property) is established, and the index is computed. A connection with Sobolev problems is shown.
			
            
            
            
          
        
      @article{SM_1996_187_11_a4,
     author = {B. Yu. Sternin and V. E. Shatalov},
     title = {Relative elliptic theory and {the~Sobolev} problem},
     journal = {Sbornik. Mathematics},
     pages = {1691--1720},
     publisher = {mathdoc},
     volume = {187},
     number = {11},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_11_a4/}
}
                      
                      
                    B. Yu. Sternin; V. E. Shatalov. Relative elliptic theory and the~Sobolev problem. Sbornik. Mathematics, Tome 187 (1996) no. 11, pp. 1691-1720. http://geodesic.mathdoc.fr/item/SM_1996_187_11_a4/
