Criteria of instability of surfaces of zero mean curvature in warped Lorentz products
Sbornik. Mathematics, Tome 187 (1996) no. 11, pp. 1643-1663 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we investigate the stability of surfaces of zero mean curvature in Lorentz manifolds. In the case when the enveloping manifold is a warped Lorentz product and under certain assumptions about the warping function, it is proved that every stable minimal tube or strip is a totally geodesic manifold.
@article{SM_1996_187_11_a2,
     author = {V. A. Klyachin and V. M. Miklyukov},
     title = {Criteria of instability of surfaces of zero mean curvature in warped {Lorentz} products},
     journal = {Sbornik. Mathematics},
     pages = {1643--1663},
     year = {1996},
     volume = {187},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_11_a2/}
}
TY  - JOUR
AU  - V. A. Klyachin
AU  - V. M. Miklyukov
TI  - Criteria of instability of surfaces of zero mean curvature in warped Lorentz products
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 1643
EP  - 1663
VL  - 187
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_11_a2/
LA  - en
ID  - SM_1996_187_11_a2
ER  - 
%0 Journal Article
%A V. A. Klyachin
%A V. M. Miklyukov
%T Criteria of instability of surfaces of zero mean curvature in warped Lorentz products
%J Sbornik. Mathematics
%D 1996
%P 1643-1663
%V 187
%N 11
%U http://geodesic.mathdoc.fr/item/SM_1996_187_11_a2/
%G en
%F SM_1996_187_11_a2
V. A. Klyachin; V. M. Miklyukov. Criteria of instability of surfaces of zero mean curvature in warped Lorentz products. Sbornik. Mathematics, Tome 187 (1996) no. 11, pp. 1643-1663. http://geodesic.mathdoc.fr/item/SM_1996_187_11_a2/

[1] Atyrbekov A., Sokolov D. D., Geometriya v tselom v ploskom prostranstve–vremeni, Izd-vo “FAN” Uzbekskoi SSR, Tashkent, 1991

[2] Gorokh V. P., “Ob ustoichivosti minimalnoi poverkhnosti v psevdoevklidovom prostranstve”, Ukr. geom. sb., 1990, no. 33, 41–46

[3] Shen Y., “On maximal submanifolds in pseudo-Riemannian manifolds”, J. Hang–zhou Univ. Natur. Sci. Ed., 18:7 (1991), 371–376 | MR | Zbl

[4] Barbashov B. M., Nesterenko V. V., Model relyativistskoi struny v fizike adronov, Energoatomizdat, M., 1987

[5] Klyachin V. A., Miklyukov V. M., “Ob odnom emkostnom priznake neustoichivosti minimalnykh giperpoverkhnostei”, DAN, 330:4 (1993), 424–426 | MR | Zbl

[6] Bim Dzh., Erlikh P., Globalnaya lorentseva geometriya, Mir, M., 1985 | MR

[7] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 2, Nauka, M., 1981

[8] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo SO AN SSSR, Novosibirsk, 1962

[9] Klyachin V. A., Miklyukov V. M., “Usloviya konechnosti vremeni suschestvovaniya maksimalnykh trubok i lent v iskrivlennykh lorentsevykh proizvedeniyakh”, Izv. RAN. Ser. matem., 58:3 (1994), 196–210 | MR | Zbl

[10] Klyachin V. A., “Maksimalnye trubchatye poverkhnosti proizvolnoi korazmernosti v prostranstve Minkovskogo”, Izv. RAN. Ser. matem., 57:4 (1993), 118–131 | Zbl

[11] Tuzhilin A. A., “Indeksy tipa Morsa dvumernykh minimalnykh poverkhnostei v $\mathbf R^3$ i $\mathbf H^3$”, Izv. AN SSSR. Ser. matem., 55:3 (1991), 581–607 | MR | Zbl

[12] Losev A. G., “Nekotorye liuvillevy teoremy na rimanovykh mnogoobraziyakh spetsialnogo vida”, Izv. vuzov. Matematika, 1991, no. 12, 15–24 | MR | Zbl

[13] Goldshtein V. M., Reshetnyak Yu. G., Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983 | MR

[14] Vuorinen M., Conformal Geometry and Quasiregular Mappings, Lect. Notes in Math., 1319, Springer-Verlag, Berlin, 1988 | MR | Zbl

[15] do Carmo M., Peng C. K., “The stable minimal surfaces in $\mathbb R^3$ are planes”, Bull. (Ne Ser.) Amer. Math. Soc., 1 (1979), 903–906 | DOI | MR | Zbl

[16] Miklyukov V. M., “Minimalnye lenty tipa gelikoida”, IX-ya Vsesoyuzn. geom. konferentsiya, Kishinev, 1988, 213

[17] Simons J., “Minimal varieties in riemannian manifolds”, Ann. of Math., 88:2 (1986), 62–105 | MR

[18] Besse A., Mnogoobraziya Einshteina, T. 1, Mir, M., 1990 | MR | Zbl

[19] Bishop R., Krittenden R., Geometriya mnogoobrazii, Mir, M., 1967 | MR | Zbl

[20] Pogorelov A. V., “Ob ustoichivosti minimalnykh poverkhnostei”, DAN SSSR, 260:2 (1981), 293–295 | MR | Zbl

[21] Burago Yu. D., Zalgaller V. A., Geometricheskie neravenstva, Nauka, L., 1980 | MR | Zbl

[22] Miklyukov V. M., “Maksimalnye trubki i lenty v prostranstve Minkovskogo”, Matem. sb., 183:12 (1992), 45–76 | MR | Zbl