Criteria of instability of surfaces of zero mean curvature in warped Lorentz products
Sbornik. Mathematics, Tome 187 (1996) no. 11, pp. 1643-1663

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate the stability of surfaces of zero mean curvature in Lorentz manifolds. In the case when the enveloping manifold is a warped Lorentz product and under certain assumptions about the warping function, it is proved that every stable minimal tube or strip is a totally geodesic manifold.
@article{SM_1996_187_11_a2,
     author = {V. A. Klyachin and V. M. Miklyukov},
     title = {Criteria of instability of surfaces of zero mean curvature in warped {Lorentz} products},
     journal = {Sbornik. Mathematics},
     pages = {1643--1663},
     publisher = {mathdoc},
     volume = {187},
     number = {11},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_11_a2/}
}
TY  - JOUR
AU  - V. A. Klyachin
AU  - V. M. Miklyukov
TI  - Criteria of instability of surfaces of zero mean curvature in warped Lorentz products
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 1643
EP  - 1663
VL  - 187
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_11_a2/
LA  - en
ID  - SM_1996_187_11_a2
ER  - 
%0 Journal Article
%A V. A. Klyachin
%A V. M. Miklyukov
%T Criteria of instability of surfaces of zero mean curvature in warped Lorentz products
%J Sbornik. Mathematics
%D 1996
%P 1643-1663
%V 187
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1996_187_11_a2/
%G en
%F SM_1996_187_11_a2
V. A. Klyachin; V. M. Miklyukov. Criteria of instability of surfaces of zero mean curvature in warped Lorentz products. Sbornik. Mathematics, Tome 187 (1996) no. 11, pp. 1643-1663. http://geodesic.mathdoc.fr/item/SM_1996_187_11_a2/