Igusa modular forms and 'the~simplest' Lorentzian Kac--Moody algebras
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 187 (1996) no. 11, pp. 1601-1641
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Automorphic corrections for the Lorentzian Kac–Moody algebras with the simplest generalized Cartan matrices of rank 3, 
$$
A_{1,0}=\begin{pmatrix}
\hphantom{-}{2}\hphantom{-}{0}{-1}
\\
\hphantom{-}{0}\hphantom {-}{2}{-2}
\\
{-1}{-2}\hphantom {-}{2}
\end{pmatrix} 
\quad\text{and}\quad 
A_{1,\mathrm {I}}=\begin {pmatrix}
\hphantom {-}{2}{-2}{-1}
\\
{-2}\hphantom {-}{2}{-1}
\\
{-1}{-1}\hphantom {-}{2}
\end{pmatrix} 
$$
are found. For $A_1,0$ this correction, which is a generalized Kac–Moody Lie super algebra, is delivered by $\chi_{35}(Z)$, the Igusa $\operatorname{Sp}_4(\mathbb Z)$-modular form of weight $35$, while for $A_{1,\mathrm{I}}$ it is given by some Siegel modular form $\widetilde \Delta_{30}(Z)$ of weight 30 with respect to a 2-congruence subgroup of $\operatorname{Sp}_4(\mathbb Z)$. Expansions of $\chi_{35}(Z)$ and $\widetilde\Delta_{30}(Z)$ in infinite products are obtained and the multiplicities of all the roots of the corresponding generalized Lorentzian Kac–Moody superalgebras are calculated. These multiplicities are determined by the Fourier coefficients of certain Jacobi forms of weight 0 and index 1. 
The method adopted for constructing $\chi_{35}(Z)$ and $\widetilde\Delta_{30}(Z)$ leads in a natural way to an explicit construction (as infinite products or sums) of Siegel modular forms whose divisors are Humbert surfaces with fixed discriminants. A geometric construction of these forms was proposed by van der Geer in 1982. 
To show the prospects for further studies, the list of all hyperbolic symmetric generalized Cartan matrices $A$ with the following properties is presented: $A$ is a matrix of rank 3 and of elliptic or parabolic type, has a lattice Weyl vector, and contains a parabolic submatrix $\widetilde{\mathbb A}_1$.
			
            
            
            
          
        
      @article{SM_1996_187_11_a1,
     author = {V. A. Gritsenko and V. V. Nikulin},
     title = {Igusa modular forms and 'the~simplest' {Lorentzian} {Kac--Moody} algebras},
     journal = {Sbornik. Mathematics},
     pages = {1601--1641},
     publisher = {mathdoc},
     volume = {187},
     number = {11},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_11_a1/}
}
                      
                      
                    TY - JOUR AU - V. A. Gritsenko AU - V. V. Nikulin TI - Igusa modular forms and 'the~simplest' Lorentzian Kac--Moody algebras JO - Sbornik. Mathematics PY - 1996 SP - 1601 EP - 1641 VL - 187 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1996_187_11_a1/ LA - en ID - SM_1996_187_11_a1 ER -
V. A. Gritsenko; V. V. Nikulin. Igusa modular forms and 'the~simplest' Lorentzian Kac--Moody algebras. Sbornik. Mathematics, Tome 187 (1996) no. 11, pp. 1601-1641. http://geodesic.mathdoc.fr/item/SM_1996_187_11_a1/
