Proof of a generalization of the conjecture of Hanna Neumann for virtually free groups
Sbornik. Mathematics, Tome 187 (1996) no. 10, pp. 1561-1575
Cet article a éte moissonné depuis la source Math-Net.Ru
The article confirms a generalization of a conjecture of Hanna Neumann for groups having the free product of three groups of order 2 as subgroups of finite index.
@article{SM_1996_187_10_a7,
author = {Yu. S. Semenov},
title = {Proof of a~generalization of the~conjecture of {Hanna} {Neumann} for virtually free groups},
journal = {Sbornik. Mathematics},
pages = {1561--1575},
year = {1996},
volume = {187},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1996_187_10_a7/}
}
Yu. S. Semenov. Proof of a generalization of the conjecture of Hanna Neumann for virtually free groups. Sbornik. Mathematics, Tome 187 (1996) no. 10, pp. 1561-1575. http://geodesic.mathdoc.fr/item/SM_1996_187_10_a7/
[1] Semenov Yu. S., “Rings associated with hyperbolic groups”, Comm. Algebra, 22 (15) (1994), 6323–6347 | DOI | MR | Zbl
[2] Neumann W., “On intersections of finitely generated subgroups of free groups”, Lecture Notes in Math., 1456, 1990, 161–170 | MR | Zbl
[3] Neumann H., “On intersections of finitely generated subgroups of free groups”, Publ. Math. Debrecen, 4 (1955–56), 186–189 ; 5 (1957–58), 128 | MR | MR | Zbl