Proof of a generalization of the conjecture of Hanna Neumann for virtually free groups
Sbornik. Mathematics, Tome 187 (1996) no. 10, pp. 1561-1575 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article confirms a generalization of a conjecture of Hanna Neumann for groups having the free product of three groups of order 2 as subgroups of finite index.
@article{SM_1996_187_10_a7,
     author = {Yu. S. Semenov},
     title = {Proof of a~generalization of the~conjecture of {Hanna} {Neumann} for virtually free groups},
     journal = {Sbornik. Mathematics},
     pages = {1561--1575},
     year = {1996},
     volume = {187},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_10_a7/}
}
TY  - JOUR
AU  - Yu. S. Semenov
TI  - Proof of a generalization of the conjecture of Hanna Neumann for virtually free groups
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 1561
EP  - 1575
VL  - 187
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_10_a7/
LA  - en
ID  - SM_1996_187_10_a7
ER  - 
%0 Journal Article
%A Yu. S. Semenov
%T Proof of a generalization of the conjecture of Hanna Neumann for virtually free groups
%J Sbornik. Mathematics
%D 1996
%P 1561-1575
%V 187
%N 10
%U http://geodesic.mathdoc.fr/item/SM_1996_187_10_a7/
%G en
%F SM_1996_187_10_a7
Yu. S. Semenov. Proof of a generalization of the conjecture of Hanna Neumann for virtually free groups. Sbornik. Mathematics, Tome 187 (1996) no. 10, pp. 1561-1575. http://geodesic.mathdoc.fr/item/SM_1996_187_10_a7/

[1] Semenov Yu. S., “Rings associated with hyperbolic groups”, Comm. Algebra, 22 (15) (1994), 6323–6347 | DOI | MR | Zbl

[2] Neumann W., “On intersections of finitely generated subgroups of free groups”, Lecture Notes in Math., 1456, 1990, 161–170 | MR | Zbl

[3] Neumann H., “On intersections of finitely generated subgroups of free groups”, Publ. Math. Debrecen, 4 (1955–56), 186–189 ; 5 (1957–58), 128 | MR | MR | Zbl