Modified $q$-Bessel functions and $q$-Macdonald functions
Sbornik. Mathematics, Tome 187 (1996) no. 10, pp. 1525-1544

Voir la notice de l'article provenant de la source Math-Net.Ru

The $q$-analogues of modified Bessel functions and Macdonald functions are defined in this paper. As in the case of $q$-Bessel functions introduced by Jackson, there are two kinds of these functions. Like their classical prototypes, they arise in harmonic analysis on quantum symmetric spaces. The definition is based on the power series expansion. Recurrence relations, difference equations, and $q$-Wronskians are obtained, as well as analogues of asymptotic expansions, which are convergent series if $q\ne 1$. Some relations for basic hypergeometric series, which result from this, are given.
@article{SM_1996_187_10_a5,
     author = {M. A. Olshanetsky and V.-B. K. Rogov},
     title = {Modified $q${-Bessel} functions and $q${-Macdonald} functions},
     journal = {Sbornik. Mathematics},
     pages = {1525--1544},
     publisher = {mathdoc},
     volume = {187},
     number = {10},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_10_a5/}
}
TY  - JOUR
AU  - M. A. Olshanetsky
AU  - V.-B. K. Rogov
TI  - Modified $q$-Bessel functions and $q$-Macdonald functions
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 1525
EP  - 1544
VL  - 187
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_10_a5/
LA  - en
ID  - SM_1996_187_10_a5
ER  - 
%0 Journal Article
%A M. A. Olshanetsky
%A V.-B. K. Rogov
%T Modified $q$-Bessel functions and $q$-Macdonald functions
%J Sbornik. Mathematics
%D 1996
%P 1525-1544
%V 187
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1996_187_10_a5/
%G en
%F SM_1996_187_10_a5
M. A. Olshanetsky; V.-B. K. Rogov. Modified $q$-Bessel functions and $q$-Macdonald functions. Sbornik. Mathematics, Tome 187 (1996) no. 10, pp. 1525-1544. http://geodesic.mathdoc.fr/item/SM_1996_187_10_a5/