On separated graphs with certain regularity conditions
Sbornik. Mathematics, Tome 187 (1996) no. 10, pp. 1487-1501
Cet article a éte moissonné depuis la source Math-Net.Ru
Two theorems are proved in this paper. Theorem I describes the connected $\mu$-regular graphs without 3-claws. Necessary and sufficient conditions for a connected amply regular graph with $\mu >1$ to be separated are obtained in Theorem 2. A graph $\Gamma$ is said to be separated if for any vertex $a$ in $\Gamma$ the subgraph $\Gamma _2(a)$ contains vertices $b$ and $c$ at a distance 2 in $\Gamma _2(a)$, and the $\mu$-subgraph for any such pair does not intersect the neighbourhood of $a$.
@article{SM_1996_187_10_a3,
author = {V. V. Kabanov and A. A. Makhnev},
title = {On separated graphs with certain regularity conditions},
journal = {Sbornik. Mathematics},
pages = {1487--1501},
year = {1996},
volume = {187},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1996_187_10_a3/}
}
V. V. Kabanov; A. A. Makhnev. On separated graphs with certain regularity conditions. Sbornik. Mathematics, Tome 187 (1996) no. 10, pp. 1487-1501. http://geodesic.mathdoc.fr/item/SM_1996_187_10_a3/
[1] Kabanov V. V., Makhnev A. A., “Koreberno regulyarnye grafy, v kotorykh antiokrestnosti vershin koreberno regulyarny”, III Mezhdunarodnaya konferentsiya po algebre, Tez. dokl., Krasnoyarsk, 1993, 139 ; “Кореберно регулярные графы без 3-лап”, Матем. заметки, 60:4 (1996), 495–503 | Zbl | MR | Zbl
[2] Enomoto H., “Characterization of families of finite permutation groups by subdegrees, II”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 20 (1973), 1–11 | MR | Zbl
[3] Terwilliger P., “Distance-regular graphs with girth 3 or 4, I”, J. Combin. Theory Ser. B, 39 (1985), 265–281 | DOI | MR | Zbl
[4] Brouwer A. E., Cohen A. M., Neumaier A., Distance-Regular Graphs, Springer-Verlag, 1989 | MR