Convolution equation with a completely monotonic kernel on the half-line
Sbornik. Mathematics, Tome 187 (1996) no. 10, pp. 1465-1485 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Wiener-Hopf integral equation \begin {equation} f(x)=g(x)+\int _0^\infty K(x-t) f(t)\,dt,\qquad (I-K)f=g \tag{{1}}\end {equation} and the related problems of factorization are considered for the kernels $\displaystyle K(\pm x)=\int _a^b e^{-xp}\,d\sigma _\pm (p)$, where $\sigma _\pm (p)\uparrow{}$ and $\displaystyle\mu \equiv \sum _\pm \int _a^b \frac 1p\,d\sigma _\pm (p)<+\infty$. If $K$ is even or the symbol $1-\widehat K(s)$ has a positive zero, then the existence of Volterra factorization is proved in the supercritical case $\mu >1$. An extension of this result to the general supercritical case is indicated. The solubility of the corresponding equation (1) is proved for $g \in L_1(0,\infty )$. Several other results in the supercritical case or for $\mu=1$ are obtained. The approach discussed is essentially based on the method of special factorization and on the generalized Ambartsumyan equations.
@article{SM_1996_187_10_a2,
     author = {N. B. Engibaryan and B. N. Enginbarian},
     title = {Convolution equation with a~completely monotonic kernel on the~half-line},
     journal = {Sbornik. Mathematics},
     pages = {1465--1485},
     year = {1996},
     volume = {187},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_10_a2/}
}
TY  - JOUR
AU  - N. B. Engibaryan
AU  - B. N. Enginbarian
TI  - Convolution equation with a completely monotonic kernel on the half-line
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 1465
EP  - 1485
VL  - 187
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_10_a2/
LA  - en
ID  - SM_1996_187_10_a2
ER  - 
%0 Journal Article
%A N. B. Engibaryan
%A B. N. Enginbarian
%T Convolution equation with a completely monotonic kernel on the half-line
%J Sbornik. Mathematics
%D 1996
%P 1465-1485
%V 187
%N 10
%U http://geodesic.mathdoc.fr/item/SM_1996_187_10_a2/
%G en
%F SM_1996_187_10_a2
N. B. Engibaryan; B. N. Enginbarian. Convolution equation with a completely monotonic kernel on the half-line. Sbornik. Mathematics, Tome 187 (1996) no. 10, pp. 1465-1485. http://geodesic.mathdoc.fr/item/SM_1996_187_10_a2/

[1] Ambartsumyan V. A., Nauchnye trudy, T. I, Erevan, 1960

[2] Chandrasekar S., Perenos luchistoi energii, IL, M., 1953

[3] Sobolev V. V., Perenos luchistoi energii, Gostekhizdat, M., 1956 | MR

[4] Busbridge I. W., The mathematics of the radiative transfer, Oxford, 1960 | Zbl

[5] Cherchinyani K., Teoriya i prilozheniya uravneniya Boltsmana, Mir, M., 1978 | MR

[6] Engibaryan N. B., “Ob integralnykh uravneniyakh na polupryamoi s raznostnymi yadrami”, Dokl. AN Arm. SSR, 54:3 (1972), 129–133 | MR | Zbl

[7] Engibaryan N. B., Arutyunyan A. A., “Integralnye uravneniya na polupryamoi s raznostnym yadrom i nelineinye funktsionalnye uravneniya”, Matem. sb., 97:1 (1975), 35–58 | MR | Zbl

[8] Krein M. G., “O nelineinykh integralnykh uravneniyakh, igrayuschikh rol v teorii uravnenii Vinera–Khopfa”, Matem. issledovaniya, 42, no. 1, Shtinitsa, Kishinev, 1976, 47–90 | MR

[9] Engibaryan N. B., Arabadzhyan L. G., O nelineinykh uravneniyakh faktorizatsii operatorov Vinera–Khopfa, Preprint EGU, No 79-1, NII FKS, Erevan, 1979

[10] Arabadzhyan L. G., Engibaryan N. B., “Uravneniya v svertkakh i nelineinye funktsionalnye uravneniya”, Itogi nauki i tekhniki. Matematicheskii analiz, 22, VINITI, M., 1984, 175–244 | MR

[11] Engibaryan N. B., Arabadzhyan L. G., “Integralnye uravneniya Vinera–Khopfa so vpolne monotonnymi yadrami”, Izv. AN Arm. SSR. Ser. matem., 25:2 (1990), 135–155 | MR | Zbl

[12] Krein M. G., Shmulyan Yu. L., “Uravneniya Vinera–Khopfa, yadra kotorykh dopuskayut integralnoe predstavlenie cherez eksponenty”, Izv. AN Arm. SSR. Ser. matem., 17:4 (1982), 307–327 ; 5, 335–375 | MR | Zbl | MR | Zbl

[13] Presdorf Z., Nekotorye klassy singulyarnykh uravnenii, Mir, M., 1972 | MR

[14] Krein M. G., “Integralnye uravneniya na polupryamoi s yadrom, zavisyaschim ot raznosti argumentov”, UMN, 13:5 (1958), 3–120 | MR | Zbl

[15] Gokhberg I. Ts., Feldman I. A., Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Nauka, M., 1971 | MR

[16] Engibaryan N. B., Arabadzhyan L. G., “Nekotorye zadachi faktorizatsii dlya integralnykh operatorov tipa svertki”, Differents. uravneniya, 26:8 (1990) | MR

[17] Engibaryan N. B., Melkonyan E. A., “O metode diskretnykh ordinat”, DAN SSSR, 292:2 (1987), 322–326 | MR | Zbl

[18] Engibaryan N. B., Pogosyan A. A., “Ob odnom klasse integralnykh uravnenii vosstanovleniya”, Matem. zametki, 47:6 (1990), 23–30 | MR | Zbl

[19] Ivanov V. V., Rybicki G. B., Kasaurov A. M., Albedo Shifting, Preprint Series No 3478, Harvard-Smithsonian Center for Astrophysics, 1992