Convolution equation with a~completely monotonic kernel on the~half-line
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 187 (1996) no. 10, pp. 1465-1485
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The Wiener-Hopf integral equation    
\begin {equation}
f(x)=g(x)+\int _0^\infty K(x-t) f(t)\,dt,\qquad 
(I-K)f=g
\tag{{1}}\end {equation}  
and the related problems of factorization are considered for the kernels 
$\displaystyle K(\pm x)=\int _a^b e^{-xp}\,d\sigma _\pm (p)$, where 
$\sigma _\pm (p)\uparrow{}$ and 
$\displaystyle\mu \equiv \sum _\pm \int _a^b \frac 1p\,d\sigma _\pm (p)+\infty$.
If $K$ is even or the symbol $1-\widehat K(s)$ has a positive zero, then the existence  of Volterra factorization is proved in the supercritical case $\mu >1$. An extension of this result to the general supercritical case is indicated. The solubility of the corresponding equation (1) is proved for $g \in L_1(0,\infty )$. Several other results in the supercritical case or for 
$\mu=1$ are obtained. The approach discussed is essentially  based on the method of special factorization and on the generalized Ambartsumyan equations.
			
            
            
            
          
        
      @article{SM_1996_187_10_a2,
     author = {N. B. Engibaryan and B. N. Enginbarian},
     title = {Convolution equation with a~completely monotonic kernel on the~half-line},
     journal = {Sbornik. Mathematics},
     pages = {1465--1485},
     publisher = {mathdoc},
     volume = {187},
     number = {10},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_10_a2/}
}
                      
                      
                    TY - JOUR AU - N. B. Engibaryan AU - B. N. Enginbarian TI - Convolution equation with a~completely monotonic kernel on the~half-line JO - Sbornik. Mathematics PY - 1996 SP - 1465 EP - 1485 VL - 187 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1996_187_10_a2/ LA - en ID - SM_1996_187_10_a2 ER -
N. B. Engibaryan; B. N. Enginbarian. Convolution equation with a~completely monotonic kernel on the~half-line. Sbornik. Mathematics, Tome 187 (1996) no. 10, pp. 1465-1485. http://geodesic.mathdoc.fr/item/SM_1996_187_10_a2/
