Convolution equation with a~completely monotonic kernel on the~half-line
Sbornik. Mathematics, Tome 187 (1996) no. 10, pp. 1465-1485

Voir la notice de l'article provenant de la source Math-Net.Ru

The Wiener-Hopf integral equation \begin {equation} f(x)=g(x)+\int _0^\infty K(x-t) f(t)\,dt,\qquad (I-K)f=g \tag{{1}}\end {equation} and the related problems of factorization are considered for the kernels $\displaystyle K(\pm x)=\int _a^b e^{-xp}\,d\sigma _\pm (p)$, where $\sigma _\pm (p)\uparrow{}$ and $\displaystyle\mu \equiv \sum _\pm \int _a^b \frac 1p\,d\sigma _\pm (p)+\infty$. If $K$ is even or the symbol $1-\widehat K(s)$ has a positive zero, then the existence of Volterra factorization is proved in the supercritical case $\mu >1$. An extension of this result to the general supercritical case is indicated. The solubility of the corresponding equation (1) is proved for $g \in L_1(0,\infty )$. Several other results in the supercritical case or for $\mu=1$ are obtained. The approach discussed is essentially based on the method of special factorization and on the generalized Ambartsumyan equations.
@article{SM_1996_187_10_a2,
     author = {N. B. Engibaryan and B. N. Enginbarian},
     title = {Convolution equation with a~completely monotonic kernel on the~half-line},
     journal = {Sbornik. Mathematics},
     pages = {1465--1485},
     publisher = {mathdoc},
     volume = {187},
     number = {10},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_10_a2/}
}
TY  - JOUR
AU  - N. B. Engibaryan
AU  - B. N. Enginbarian
TI  - Convolution equation with a~completely monotonic kernel on the~half-line
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 1465
EP  - 1485
VL  - 187
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_10_a2/
LA  - en
ID  - SM_1996_187_10_a2
ER  - 
%0 Journal Article
%A N. B. Engibaryan
%A B. N. Enginbarian
%T Convolution equation with a~completely monotonic kernel on the~half-line
%J Sbornik. Mathematics
%D 1996
%P 1465-1485
%V 187
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1996_187_10_a2/
%G en
%F SM_1996_187_10_a2
N. B. Engibaryan; B. N. Enginbarian. Convolution equation with a~completely monotonic kernel on the~half-line. Sbornik. Mathematics, Tome 187 (1996) no. 10, pp. 1465-1485. http://geodesic.mathdoc.fr/item/SM_1996_187_10_a2/