Several integral estimates of the~derivatives of rational functions on sets of finite density
Sbornik. Mathematics, Tome 187 (1996) no. 10, pp. 1443-1463
Voir la notice de l'article provenant de la source Math-Net.Ru
Majorizing sums of special form are constructed for rational functions and their derivatives $R^{(\mu )}(z)$ (here $\mu =0,1,\dots $, $z \in \mathbb C$). As a consequence, several estimates of $R^{(\mu )}$ in integral metrics are obtained on rectifiable curves $\Gamma$ of finite density $\omega (\Gamma )=\sup \bigl \{\operatorname {mes}_1(\Gamma \cap \Delta )/\operatorname {diam}\Delta \bigr \}$, where the supremum is taken over all open discs $\Delta$. Certain estimates on sets that are not necessarily connected are also obtained.
@article{SM_1996_187_10_a1,
author = {V. I. Danchenko},
title = {Several integral estimates of the~derivatives of rational functions on sets of finite density},
journal = {Sbornik. Mathematics},
pages = {1443--1463},
publisher = {mathdoc},
volume = {187},
number = {10},
year = {1996},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1996_187_10_a1/}
}
TY - JOUR AU - V. I. Danchenko TI - Several integral estimates of the~derivatives of rational functions on sets of finite density JO - Sbornik. Mathematics PY - 1996 SP - 1443 EP - 1463 VL - 187 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1996_187_10_a1/ LA - en ID - SM_1996_187_10_a1 ER -
V. I. Danchenko. Several integral estimates of the~derivatives of rational functions on sets of finite density. Sbornik. Mathematics, Tome 187 (1996) no. 10, pp. 1443-1463. http://geodesic.mathdoc.fr/item/SM_1996_187_10_a1/