Asymptotic solution of the~Signorini problem with an~obstacle on a~thin elongated set
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 187 (1996) no. 10, pp. 1411-1442
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The Signorini problem for a Poisson equation is studied subject to onesided constraints imposed on a narrow annular boundary band $\Gamma _\varepsilon$ (of width $O(\varepsilon )$). An asymptotic analysis yields a resultant variational inequality on the contour $\Gamma$ to which $\Gamma _\varepsilon$ contracts as $\varepsilon \to 0$. Approximate solutions of the resultant inequality are derived with varying degree of accuracy and used to construct and justify an asymptotic solution of the original Signorini problem.
			
            
            
            
          
        
      @article{SM_1996_187_10_a0,
     author = {I. I. Argatov and S. A. Nazarov},
     title = {Asymptotic solution of {the~Signorini} problem with an~obstacle on a~thin elongated set},
     journal = {Sbornik. Mathematics},
     pages = {1411--1442},
     publisher = {mathdoc},
     volume = {187},
     number = {10},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_10_a0/}
}
                      
                      
                    TY - JOUR AU - I. I. Argatov AU - S. A. Nazarov TI - Asymptotic solution of the~Signorini problem with an~obstacle on a~thin elongated set JO - Sbornik. Mathematics PY - 1996 SP - 1411 EP - 1442 VL - 187 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1996_187_10_a0/ LA - en ID - SM_1996_187_10_a0 ER -
I. I. Argatov; S. A. Nazarov. Asymptotic solution of the~Signorini problem with an~obstacle on a~thin elongated set. Sbornik. Mathematics, Tome 187 (1996) no. 10, pp. 1411-1442. http://geodesic.mathdoc.fr/item/SM_1996_187_10_a0/
