Asymptotic solution of the Signorini problem with an obstacle on a thin elongated set
Sbornik. Mathematics, Tome 187 (1996) no. 10, pp. 1411-1442 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Signorini problem for a Poisson equation is studied subject to onesided constraints imposed on a narrow annular boundary band $\Gamma _\varepsilon$ (of width $O(\varepsilon )$). An asymptotic analysis yields a resultant variational inequality on the contour $\Gamma$ to which $\Gamma _\varepsilon$ contracts as $\varepsilon \to 0$. Approximate solutions of the resultant inequality are derived with varying degree of accuracy and used to construct and justify an asymptotic solution of the original Signorini problem.
@article{SM_1996_187_10_a0,
     author = {I. I. Argatov and S. A. Nazarov},
     title = {Asymptotic solution of {the~Signorini} problem with an~obstacle on a~thin elongated set},
     journal = {Sbornik. Mathematics},
     pages = {1411--1442},
     year = {1996},
     volume = {187},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_10_a0/}
}
TY  - JOUR
AU  - I. I. Argatov
AU  - S. A. Nazarov
TI  - Asymptotic solution of the Signorini problem with an obstacle on a thin elongated set
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 1411
EP  - 1442
VL  - 187
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_10_a0/
LA  - en
ID  - SM_1996_187_10_a0
ER  - 
%0 Journal Article
%A I. I. Argatov
%A S. A. Nazarov
%T Asymptotic solution of the Signorini problem with an obstacle on a thin elongated set
%J Sbornik. Mathematics
%D 1996
%P 1411-1442
%V 187
%N 10
%U http://geodesic.mathdoc.fr/item/SM_1996_187_10_a0/
%G en
%F SM_1996_187_10_a0
I. I. Argatov; S. A. Nazarov. Asymptotic solution of the Signorini problem with an obstacle on a thin elongated set. Sbornik. Mathematics, Tome 187 (1996) no. 10, pp. 1411-1442. http://geodesic.mathdoc.fr/item/SM_1996_187_10_a0/

[1] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[2] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR

[3] Glovinski R., Lions Zh.-L., Tremoler R., Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979 | MR

[4] Nazarov S. A., “Asimptoticheskoe reshenie variatsionnykh neravenstv dlya lineinogo operatora s malym parametrom pri starshikh proizvodnykh”, Izv. AN SSSR. Ser. matem., 54:4 (1980), 754–773 | MR

[5] Nazarov S. A., “Asimptoticheskoe reshenie variatsionnogo neravenstva, modeliruyuschego trenie”, Izv. AN SSSR. Ser. matem., 54:5 (1990), 990–1020 | MR | Zbl

[6] Nazarov S. A., “O vozmuschenii reshenii zadachi Sinorini”, Matem. zametki, 47:1 (1990), 115–126 | MR

[7] Nazarov S. A., “Asimptotika reshenii zadachi Sinorini bez treniya ili s malym treniem”, Problemy matem. analiza, no. 12, Izd-vo SPbGU, SPb., 1992, 82–109

[8] Nazarov S. A., “Ellipticheskie neravenstva dlya tonkikh uprugikh oblastei pri malom koeffitsiente treniya”, Differents. uravneniya, 26:4 (1990), 667–687 | MR

[9] Argatov I. I., Nazarov S. A., “Asimptoticheskoe reshenie zadachi Sinorini s malymi uchastkami svobodnoi granitsy”, Sib. matem. zhurn., 35:2 (1994), 258–277 | MR | Zbl

[10] Argatov I. I., Nazarov S. A., “Asimptoticheskoe reshenie zadachi ob uprugom tele, lezhaschem na neskolkikh malykh oporakh”, Prikladnaya matem. i mekh., 58:2 (1994), 110–118 | MR | Zbl

[11] Fedoryuk M. V., “Zadacha Dirikhle dlya operatora Laplasa vo vneshnosti tonkogo tela vrascheniya”, Trudy sem. im. S. L. Soboleva, no. 1, Institut matematiki SO AN SSSR, Novosibirsk, 1980, 113–131 | MR

[12] Fedoryuk M. V., “Asimptotika resheniya zadachi Dirikhle dlya uravnenii Laplasa i Gelmgoltsa vo vneshnosti tonkogo tsilindra”, Izv. AN SSSR. Ser. matem., 45:1 (1981), 167–186 | MR | Zbl

[13] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Ob asimptotike reshenii zadachi Dirikhle v trekhmernoi oblasti s vyrezannym tonkim telom”, Dokl. AN SSSR, 256:1 (1981), 37–39 | MR | Zbl

[14] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Asimptotika reshenii zadachi Dirikhle v oblasti s vyrezannoi tonkoi trubkoi”, Matem. sb., 116:2 (1981), 187–217 | MR | Zbl

[15] Nazarov S. A., “Osrednenie kraevykh zadach v oblasti, soderzhaschei tonkuyu polost s periodicheski izmenyayuschimsya secheniem”, Tr. MMO, 53, URSS, M., 1990, 98–129

[16] Nazarov S. A., “Vyvod variatsionnogo neravenstva dlya formy malogo prirascheniya treschiny otryva”, Mekhanika tverdogo tela, 1989, no. 2, 152–160

[17] Nazarov S. A., Polyakova O. R., “Razrushenie uzkoi peremychki mezhdu treschinami, lezhaschimi v odnoi ploskosti”, Prikladnaya matem. i mekh., 55:1 (1991), 165–173 | MR

[18] Nazarov S. A., Polyakova O. R., “Ob ekvivalentnosti kriteriev razrusheniya dlya treschiny otryva v uprugom prostranstve”, Mekhanika tverdogo tela, 1992, no. 2, 101–113 | MR

[19] Van-Daik M. D., Metody vozmuschenii v mekhanike zhidkosti, Mir, M., 1967

[20] Leguillon D., Sanches-Palencia E., Computation of singular solutions in elliptic problems and elasticity, Masson, Paris, 1987 | Zbl

[21] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[22] Nazarov S. A., Plamenevsky B. A., Elliptic problems in domains with piecewise smooth boundaries, Walter de Gruyter, Berlin, 1994 | MR

[23] Nazarov S. A., Paukshto M. V., Diskretnye modeli i osredneniya v teorii uprugosti, Izd-vo LGU, L., 1984

[24] Mazja W. G., Nazarov S. A., Plamenevski B. A., Asymptotische Theorie elliptischer Randwertaufgaben in singular gestorten Gebieten, V. 1, Akadeemie-Verlag, Berlin, 1990; V. 2, 1991

[25] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno-gladkoi granitsei, Nauka, M., 1991

[26] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl

[27] Nachel Yu., “Ob ekvivalentnykh normirovkakh v funktsionalnykh prostranstvakh”, Vestnik LGU, 1974, no. 7, 41–47

[28] Khermander L., Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, M., 1965 | MR

[29] Teilor M., Psevdodifferentsialnye operatory, Mir, M., 1985 | MR

[30] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Ob asimptotike reshenii ellipticheskikh kraevykh zadach pri neregulyarnom vozmuschenii oblasti”, Problemy matem. analiza, no. 8, Izd-vo LGU, L., 1981, 72–153 | MR

[31] Agmon S., Douglis A., Nirenberg L., “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, 1”, Comm. Pure Appl. Math., 12:4 (1959), 623–723 | DOI | MR

[32] Solonnikov V. A., “Apriornye otsenki dlya uravnenii vtorogo poryadka parabolicheskogo tipa”, Tr. MIAN, 70, Nauka, M., 1964, 133–212 | MR | Zbl

[33] Levy H., Stampacchia G., “On the regularity of the solution of a variational inequality”, Comm. Pure Appl. Math., 22 (1969), 153–188 | DOI | MR

[34] Sobolev S. L., Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR