Asymptotic solution of the~Signorini problem with an~obstacle on a~thin elongated set
Sbornik. Mathematics, Tome 187 (1996) no. 10, pp. 1411-1442

Voir la notice de l'article provenant de la source Math-Net.Ru

The Signorini problem for a Poisson equation is studied subject to onesided constraints imposed on a narrow annular boundary band $\Gamma _\varepsilon$ (of width $O(\varepsilon )$). An asymptotic analysis yields a resultant variational inequality on the contour $\Gamma$ to which $\Gamma _\varepsilon$ contracts as $\varepsilon \to 0$. Approximate solutions of the resultant inequality are derived with varying degree of accuracy and used to construct and justify an asymptotic solution of the original Signorini problem.
@article{SM_1996_187_10_a0,
     author = {I. I. Argatov and S. A. Nazarov},
     title = {Asymptotic solution of {the~Signorini} problem with an~obstacle on a~thin elongated set},
     journal = {Sbornik. Mathematics},
     pages = {1411--1442},
     publisher = {mathdoc},
     volume = {187},
     number = {10},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_10_a0/}
}
TY  - JOUR
AU  - I. I. Argatov
AU  - S. A. Nazarov
TI  - Asymptotic solution of the~Signorini problem with an~obstacle on a~thin elongated set
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 1411
EP  - 1442
VL  - 187
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_10_a0/
LA  - en
ID  - SM_1996_187_10_a0
ER  - 
%0 Journal Article
%A I. I. Argatov
%A S. A. Nazarov
%T Asymptotic solution of the~Signorini problem with an~obstacle on a~thin elongated set
%J Sbornik. Mathematics
%D 1996
%P 1411-1442
%V 187
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1996_187_10_a0/
%G en
%F SM_1996_187_10_a0
I. I. Argatov; S. A. Nazarov. Asymptotic solution of the~Signorini problem with an~obstacle on a~thin elongated set. Sbornik. Mathematics, Tome 187 (1996) no. 10, pp. 1411-1442. http://geodesic.mathdoc.fr/item/SM_1996_187_10_a0/