@article{SM_1995_83_2_a9,
author = {S. M. Ageev},
title = {Manifolds modeled by an~equivariant {Hilbert} cube},
journal = {Sbornik. Mathematics},
pages = {445--468},
year = {1995},
volume = {83},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_83_2_a9/}
}
S. M. Ageev. Manifolds modeled by an equivariant Hilbert cube. Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 445-468. http://geodesic.mathdoc.fr/item/SM_1995_83_2_a9/
[1] Palais R., The classification of $G$-spaces, Mem. Amer. Math. Soc., 36, Providence, RI, 1960 | MR
[2] Open problem in topology, North–Holland, Amsterdam, 1990
[3] Steinberger M., West J., “On the geometric topology of locally linear actions of finite groups”, Geometric and algebraic topology, Banach Center Publ., 18, PWN-Polish Scientific Publishers, Warszawa, 1986, 181–204 | MR
[4] Dzhermakyan M., “Teorema Chepmena v ekvivariantnoi teorii sheipov”, UMN, 43(2) (1988), 137–138 | MR | Zbl
[5] Chepmen T., Lektsii o $Q$-mnogoobraziyakh, Mir, M., 1981 | MR
[6] Shtanko M., “Vlozhenie kompaktov v evklidovo prostranstvo”, Matem. sb., 83:2 (1970), 234–255 | MR | Zbl
[7] Kanerva O., $G$-simple-homotopy type and equivariant Hilbert cubes for a finite group $G$, Annales academie scientiarum fennice. Series A, 77, Helsinki, 1990 | Zbl
[8] West J., “Infinite products which are Hilbert cubes”, Trans. Amer. Math. Soc., 150 (1970), 1–25 | DOI | MR | Zbl
[9] Fedorchuk V. V., “Myagkie otobrazheniya, mnogoznachnye retraktsii i funktory”, UMN, 41:6 (1986), 121–159 | MR | Zbl
[10] Bredon G., Vvedenie v teoriyu kompaktnykh grupp preobrazovanii, Nauka, M., 1980 | MR | Zbl
[11] Illman S., “The equivariant triangulation theorem for action of compact Lie groups”, Math. Ann., 262 (1983), 487–501 | DOI | MR | Zbl
[12] Torunczyk H., “On $\operatorname {CE}$-images of the Hilbert cube and characterization of $Q$-manifolds”, Fund. Math., 106 (1980), 31–40 | MR | Zbl
[13] Ageev S. M., “Topologicheskie dokazatelstva teoremy Kellera i ee ekvivariantnoi versii”, Izv. RAN. Ser. matem., 42:3 (1994), 621–629 | MR | Zbl
[14] Ageev S. M., “Klassifikatsiya $G$-prostranstv”, Izv. RAN. Ser. matem., 56:6 (1992), 1345–1357 | MR | Zbl
[15] Haver W., “Mapping between ANRs that are fine homotopy equivalences”, Pacific J. Math., 58 (1975), 457–461 | MR | Zbl
[16] Walsh J., “Characterization of Hilbert cube manifolds: an alternate proof”, Geometric and algebraic topology, Banach Center Publ., 18, PWN-Polish Scientific Publishers, Warszawa, 1986, 153–161 | MR
[17] Bestvina M., Walsh J., “Characterization of Hilbert space manifold revisited”, Top. and Appl., 24:1 (1986), 53–69 | DOI | MR | Zbl