Manifolds modeled by an equivariant Hilbert cube
Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 445-468 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

J. E. West posed the general problem of carrying over the basics of the theory of manifolds modeled by the Hilbert cube ($\equiv Q$-manifolds) into the equivariant realm. In particular, under the number 942 in 'Open problems in topology' he formulated the following problem: 'If $K$ is a locally compact $G$-CW complex, is the diagonal $G$-action on $X=K\times Q_G$ a $Q_G$-manifold? [$G$ is a compact Lie group and $Q_G=\prod_{i>0,\rho}D_{\rho,i}$ is the product of the unit balls of all the irreducible real representations of $G$, each representation disc being represented infinitely often.] What if $K$ is a locally compact $G$-ANR?' In this paper we construct a theory of $\mathbb Q$-manifolds for an arbitrary compact group $G$ in a scope that suffices for proving a characterization theorem for such manifolds.
@article{SM_1995_83_2_a9,
     author = {S. M. Ageev},
     title = {Manifolds modeled by an~equivariant {Hilbert} cube},
     journal = {Sbornik. Mathematics},
     pages = {445--468},
     year = {1995},
     volume = {83},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_83_2_a9/}
}
TY  - JOUR
AU  - S. M. Ageev
TI  - Manifolds modeled by an equivariant Hilbert cube
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 445
EP  - 468
VL  - 83
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1995_83_2_a9/
LA  - en
ID  - SM_1995_83_2_a9
ER  - 
%0 Journal Article
%A S. M. Ageev
%T Manifolds modeled by an equivariant Hilbert cube
%J Sbornik. Mathematics
%D 1995
%P 445-468
%V 83
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1995_83_2_a9/
%G en
%F SM_1995_83_2_a9
S. M. Ageev. Manifolds modeled by an equivariant Hilbert cube. Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 445-468. http://geodesic.mathdoc.fr/item/SM_1995_83_2_a9/

[1] Palais R., The classification of $G$-spaces, Mem. Amer. Math. Soc., 36, Providence, RI, 1960 | MR

[2] Open problem in topology, North–Holland, Amsterdam, 1990

[3] Steinberger M., West J., “On the geometric topology of locally linear actions of finite groups”, Geometric and algebraic topology, Banach Center Publ., 18, PWN-Polish Scientific Publishers, Warszawa, 1986, 181–204 | MR

[4] Dzhermakyan M., “Teorema Chepmena v ekvivariantnoi teorii sheipov”, UMN, 43(2) (1988), 137–138 | MR | Zbl

[5] Chepmen T., Lektsii o $Q$-mnogoobraziyakh, Mir, M., 1981 | MR

[6] Shtanko M., “Vlozhenie kompaktov v evklidovo prostranstvo”, Matem. sb., 83:2 (1970), 234–255 | MR | Zbl

[7] Kanerva O., $G$-simple-homotopy type and equivariant Hilbert cubes for a finite group $G$, Annales academie scientiarum fennice. Series A, 77, Helsinki, 1990 | Zbl

[8] West J., “Infinite products which are Hilbert cubes”, Trans. Amer. Math. Soc., 150 (1970), 1–25 | DOI | MR | Zbl

[9] Fedorchuk V. V., “Myagkie otobrazheniya, mnogoznachnye retraktsii i funktory”, UMN, 41:6 (1986), 121–159 | MR | Zbl

[10] Bredon G., Vvedenie v teoriyu kompaktnykh grupp preobrazovanii, Nauka, M., 1980 | MR | Zbl

[11] Illman S., “The equivariant triangulation theorem for action of compact Lie groups”, Math. Ann., 262 (1983), 487–501 | DOI | MR | Zbl

[12] Torunczyk H., “On $\operatorname {CE}$-images of the Hilbert cube and characterization of $Q$-manifolds”, Fund. Math., 106 (1980), 31–40 | MR | Zbl

[13] Ageev S. M., “Topologicheskie dokazatelstva teoremy Kellera i ee ekvivariantnoi versii”, Izv. RAN. Ser. matem., 42:3 (1994), 621–629 | MR | Zbl

[14] Ageev S. M., “Klassifikatsiya $G$-prostranstv”, Izv. RAN. Ser. matem., 56:6 (1992), 1345–1357 | MR | Zbl

[15] Haver W., “Mapping between ANRs that are fine homotopy equivalences”, Pacific J. Math., 58 (1975), 457–461 | MR | Zbl

[16] Walsh J., “Characterization of Hilbert cube manifolds: an alternate proof”, Geometric and algebraic topology, Banach Center Publ., 18, PWN-Polish Scientific Publishers, Warszawa, 1986, 153–161 | MR

[17] Bestvina M., Walsh J., “Characterization of Hilbert space manifold revisited”, Top. and Appl., 24:1 (1986), 53–69 | DOI | MR | Zbl