Manifolds modeled by an~equivariant Hilbert cube
Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 445-468

Voir la notice de l'article provenant de la source Math-Net.Ru

J. E. West posed the general problem of carrying over the basics of the theory of manifolds modeled by the Hilbert cube ($\equiv Q$-manifolds) into the equivariant realm. In particular, under the number 942 in 'Open problems in topology' he formulated the following problem: 'If $K$ is a locally compact $G$-CW complex, is the diagonal $G$-action on $X=K\times Q_G$$Q_G$-manifold? [$G$ is a compact Lie group and $Q_G=\prod_{i>0,\rho}D_{\rho,i}$ is the product of the unit balls of all the irreducible real representations of $G$, each representation disc being represented infinitely often.] What if $K$ is a locally compact $G$-ANR?' In this paper we construct a theory of $\mathbb Q$-manifolds for an arbitrary compact group $G$ in a scope that suffices for proving a characterization theorem for such manifolds.
@article{SM_1995_83_2_a9,
     author = {S. M. Ageev},
     title = {Manifolds modeled by an~equivariant {Hilbert} cube},
     journal = {Sbornik. Mathematics},
     pages = {445--468},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_83_2_a9/}
}
TY  - JOUR
AU  - S. M. Ageev
TI  - Manifolds modeled by an~equivariant Hilbert cube
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 445
EP  - 468
VL  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_83_2_a9/
LA  - en
ID  - SM_1995_83_2_a9
ER  - 
%0 Journal Article
%A S. M. Ageev
%T Manifolds modeled by an~equivariant Hilbert cube
%J Sbornik. Mathematics
%D 1995
%P 445-468
%V 83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_83_2_a9/
%G en
%F SM_1995_83_2_a9
S. M. Ageev. Manifolds modeled by an~equivariant Hilbert cube. Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 445-468. http://geodesic.mathdoc.fr/item/SM_1995_83_2_a9/