Smoothing of abstract functions
Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 405-430 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper investigates the problem of approximating uniformly continuous maps by smoother maps. Here the uniformly continuous maps are defined on subsets of Banach spaces and take values in other Banach spaces.
@article{SM_1995_83_2_a7,
     author = {I. G. Tsar'kov},
     title = {Smoothing of abstract functions},
     journal = {Sbornik. Mathematics},
     pages = {405--430},
     year = {1995},
     volume = {83},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_83_2_a7/}
}
TY  - JOUR
AU  - I. G. Tsar'kov
TI  - Smoothing of abstract functions
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 405
EP  - 430
VL  - 83
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1995_83_2_a7/
LA  - en
ID  - SM_1995_83_2_a7
ER  - 
%0 Journal Article
%A I. G. Tsar'kov
%T Smoothing of abstract functions
%J Sbornik. Mathematics
%D 1995
%P 405-430
%V 83
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1995_83_2_a7/
%G en
%F SM_1995_83_2_a7
I. G. Tsar'kov. Smoothing of abstract functions. Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 405-430. http://geodesic.mathdoc.fr/item/SM_1995_83_2_a7/

[1] Nemirovskii A. S., Semenov S. M., “O polinomialnoi approksimatsii na gilbertovom prostranstve”, Matem. sb., 92(134) (1973), 257–281 | MR | Zbl

[2] Timan A. F., “Deformatsiya metricheskikh prostranstv i nekotorye svyazannye s nei voprosy teorii funktsii”, UMN, 20:2 (1965), 53–88 | MR

[3] Tsarkov I. G., “Poperechniki i neravenstvo tipa Dzheksona dlya abstraktnykh funktsii”, Tr. MIRAN, 198, Nauka, M., 1992, 219–231 | MR | Zbl

[4] Kadets M. I., “O topologicheskoi ekvivalentnosti ravnomerno vypuklykh prostranstv”, UMN, 10:4 (1955), 137–141 | MR | Zbl

[5] Tsarkov I. G., “O globalnom suschestvovanii neyavnoi funktsii”, Matem. sb., 184:7 (1993), 79–116 | MR | Zbl

[6] Vlasov L. P., “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, UMN, 28:6 (1973), 3–66 | MR | Zbl

[7] Valentine F. A., “A Lipschitz condition preserving extension for a vector function”, Amer. J. Math., 67:1 (1945), 83–93 | DOI | MR | Zbl

[8] Konyagin S. V., Tsarkov I. G., “O sglazhivanii otobrazhenii v normirovannykh prostranstvakh”, UMN, 43:4 (1988), 205–206 | MR

[9] Distel D., Geometriya banakhovykh prostranstv, Vischa shkola, Kiev, 1980 | MR

[10] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl

[11] Czipszer J., Geher L., “Extension of functions satisfying a Lipschitz condition”, Acta Math. Acad. Sc. Hung., 6:1–2 (1955), 213–220 | DOI | MR | Zbl