Coercive error estimates in the projection and projection-difference methods for parabolic equations
Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 369-382 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Under conditions of coercive solvability of a parabolic equation in a Hilbert space, effective energy estimates are obtained for errors of approximate solutions found by the projection and projection-difference methods
@article{SM_1995_83_2_a5,
     author = {V. V. Smagin},
     title = {Coercive error estimates in the~projection and projection-difference methods for parabolic equations},
     journal = {Sbornik. Mathematics},
     pages = {369--382},
     year = {1995},
     volume = {83},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_83_2_a5/}
}
TY  - JOUR
AU  - V. V. Smagin
TI  - Coercive error estimates in the projection and projection-difference methods for parabolic equations
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 369
EP  - 382
VL  - 83
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1995_83_2_a5/
LA  - en
ID  - SM_1995_83_2_a5
ER  - 
%0 Journal Article
%A V. V. Smagin
%T Coercive error estimates in the projection and projection-difference methods for parabolic equations
%J Sbornik. Mathematics
%D 1995
%P 369-382
%V 83
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1995_83_2_a5/
%G en
%F SM_1995_83_2_a5
V. V. Smagin. Coercive error estimates in the projection and projection-difference methods for parabolic equations. Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 369-382. http://geodesic.mathdoc.fr/item/SM_1995_83_2_a5/

[1] Ladyzhenskaya O. A., “O reshenii nestatsionarnykh operatornykh uravnenii”, Matem. sb., 39 (81) (1956), 491–524 | MR | Zbl

[2] Sobolevskii P. E., “Obobschennye resheniya differentsialnykh uravnenii v gilbertovom prostranstve”, DAN SSSR, 122:6 (1958), 994–996 | MR | Zbl

[3] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR

[4] Berezanskii Yu. M., Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965 | MR

[5] Varga R., Funktsionalnyi analiz i teoriya approksimatsii v chislennom analize, Mir, M., 1974 | MR | Zbl

[6] Vainikko G. M., Oya P. E., “O skhodimosti i bystrote skhodimosti metoda Galerkina dlya abstraktnykh evolyutsionnykh uravnenii”, Differents. uravneniya, 11:7 (1975), 1269–1277 | MR | Zbl

[7] Akopyan Yu. R., Oganesyan L. A., “Variatsionno-raznostnyi metod resheniya dvumernykh lineinykh parabolicheskikh uravnenii”, Zhurn. vychisl. matem. i matem. fiz., 17:1 (1977), 109–118 | MR | Zbl

[8] Zlotnik A. A., “Otsenka skorosti skhodimosti v $V_2(Q_T)$ proektsionno-raznostnykh skhem dlya parabolicheskikh uravnenii”, Vestn. MGU. Ser. 15. Vychislit. matematika i kibernetika, 1980, no. 1, 27–35 | MR | Zbl

[9] Smagin V. V., Sobolevskii P. E., “Koertsitivnye otsenki tochnosti metoda Eilera dlya parabolicheskikh uravnenii s peremennymi operatorami”, Dokl. AN USSR. Seriya A, 11 (1989), 17–20 | MR | Zbl