Solvability of initial-boundary value problems for Euler's equations for flows of an ideal incompressible nonhomogeneous fluid and an ideal barotropic fluid bounded by free surfaces
Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 347-368 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Nishida version of the abstract nonlinear Cauchy–Kovalevskaya theorem is used to obtain the results indicated in the title. In this connection, one has to construct special scales of Banach spaces and to estimate in them the solutions of elliptic equations
@article{SM_1995_83_2_a4,
     author = {V. I. Sedenko},
     title = {Solvability of initial-boundary value problems for {Euler's} equations for flows of an~ideal incompressible nonhomogeneous fluid and an~ideal barotropic fluid bounded by free surfaces},
     journal = {Sbornik. Mathematics},
     pages = {347--368},
     year = {1995},
     volume = {83},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_83_2_a4/}
}
TY  - JOUR
AU  - V. I. Sedenko
TI  - Solvability of initial-boundary value problems for Euler's equations for flows of an ideal incompressible nonhomogeneous fluid and an ideal barotropic fluid bounded by free surfaces
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 347
EP  - 368
VL  - 83
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1995_83_2_a4/
LA  - en
ID  - SM_1995_83_2_a4
ER  - 
%0 Journal Article
%A V. I. Sedenko
%T Solvability of initial-boundary value problems for Euler's equations for flows of an ideal incompressible nonhomogeneous fluid and an ideal barotropic fluid bounded by free surfaces
%J Sbornik. Mathematics
%D 1995
%P 347-368
%V 83
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1995_83_2_a4/
%G en
%F SM_1995_83_2_a4
V. I. Sedenko. Solvability of initial-boundary value problems for Euler's equations for flows of an ideal incompressible nonhomogeneous fluid and an ideal barotropic fluid bounded by free surfaces. Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 347-368. http://geodesic.mathdoc.fr/item/SM_1995_83_2_a4/

[1] Ovsyannikov L. V., Obschie uravneniya i primery. Zadacha o neustanovivshemsya dvizhenii zhidkosti so svobodnoi granitsei, Nauka, Novosibirsk, 1967

[2] Ovsyannikov L. V., “K obosnovaniyu teorii melkoi vody”, Dinamika sploshnoi sredy, 1972, no. 8, 22–26

[3] Nalimov V. I., “Apriornye otsenki reshenii ellipticheskikh uravnenii i ikh primeneniya k zadache Koshi–Puassona”, DAN, 189:1 (1969), 45–48 | MR | Zbl

[4] Nalimov V. I., “Zadacha Koshi–Puassona”, Dinamika sploshnoi sredy, 1974, no. 18, 104–210 | MR

[5] Ovsyannikov L. V., “Singulyarnyi operator v shkale banakhovykh prostranstv”, DAN, 163:4 (1965), 819–822 | MR | Zbl

[6] Ovsyannikov L. V., “Nelineinaya zadacha Koshi v shkale banakhovykh prostranstv”, DAN, 200:4 (1971), 789–792 | MR | Zbl

[7] Nirenberg L., “An abstract form of the nonlinear Caychy–Kowalewsky theorem”, J. Diff. Geom., 6 (1972), 561–576 | MR | Zbl

[8] Nirenberg L., Lektsii po nelineinomu funktsionalnomu analizu, Mir, M., 1977 | MR | Zbl

[9] Ovsyannikov L. V., “Abstraktnaya forma teoremy Koshi–Kovalevskoi i ee prilozheniya”, Differentsialnye uravneniya s chastnymi proizvodnymi, Trudy konferentsii po differentsialnym uravneniyam i vychislitelnoi matematike, Nauka, Novosibirsk, 1980, 88–94 | MR

[10] Babenko K. I., Petrovich V. Yu., O neustoichivosti Releya–Teilora, Preprint No 6, IPM, 1978 | MR

[11] Babenko K. I., Petrovich V. Yu., “O neustoichivosti Releya–Teilora”, DAN, 245:3 (1979), 453–457 | MR

[12] Solonnikov V. A., “Razreshimost zadachi o dvizhenii vyazkoi neszhimaemoi zhidkosti, ogranichennoi svobodnoi poverkhnostyu”, Dinamika sploshnoi sredy, 1975, no. 23, 123–128 | MR

[13] Ovsyannikov L. V., “Zadacha Koshi v shkale banakhovykh prostranstv analiticheskikh funktsii”, Tr. simp. po mekhanike sploshnoi sredy i rodstvennym problemam analiza, no. 2, Metsniereba, Tbilisi, 1974, 219–229

[14] Ovsiannikov L. V., “Non Local Cuachy Problems in Fluid Dynamics”, Proc. of International Congress of Mathematicians (Nice, 1970), Gauthier–Villars, Paris, 1971, 137–142 | MR

[15] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[16] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl