Solvability of initial-boundary value problems for Euler's equations for flows of an~ideal incompressible nonhomogeneous fluid and an~ideal barotropic fluid bounded by free surfaces
Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 347-368

Voir la notice de l'article provenant de la source Math-Net.Ru

The Nishida version of the abstract nonlinear Cauchy–Kovalevskaya theorem is used to obtain the results indicated in the title. In this connection, one has to construct special scales of Banach spaces and to estimate in them the solutions of elliptic equations
@article{SM_1995_83_2_a4,
     author = {V. I. Sedenko},
     title = {Solvability of initial-boundary value problems for {Euler's} equations for flows of an~ideal incompressible nonhomogeneous fluid and an~ideal barotropic fluid bounded by free surfaces},
     journal = {Sbornik. Mathematics},
     pages = {347--368},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_83_2_a4/}
}
TY  - JOUR
AU  - V. I. Sedenko
TI  - Solvability of initial-boundary value problems for Euler's equations for flows of an~ideal incompressible nonhomogeneous fluid and an~ideal barotropic fluid bounded by free surfaces
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 347
EP  - 368
VL  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_83_2_a4/
LA  - en
ID  - SM_1995_83_2_a4
ER  - 
%0 Journal Article
%A V. I. Sedenko
%T Solvability of initial-boundary value problems for Euler's equations for flows of an~ideal incompressible nonhomogeneous fluid and an~ideal barotropic fluid bounded by free surfaces
%J Sbornik. Mathematics
%D 1995
%P 347-368
%V 83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_83_2_a4/
%G en
%F SM_1995_83_2_a4
V. I. Sedenko. Solvability of initial-boundary value problems for Euler's equations for flows of an~ideal incompressible nonhomogeneous fluid and an~ideal barotropic fluid bounded by free surfaces. Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 347-368. http://geodesic.mathdoc.fr/item/SM_1995_83_2_a4/