Parabolic equations with a~small parameter, and large deviations for diffusion processes
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 331-346
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Nonlinear second-order parabolic equations with a small parameter at the highest derivative and coefficients depending on this parameter are considered. Under weak convergence in 
$L_{2,\mathrm{loc}}$ of the coefficients of the equation, uniform convergence on compacta of solutions to a generalized solution of a first-order partial differential equation is established. This result is used to justify the principle of large deviations for diffusion processes with small diffusion and coefficients that converge weakly in $L_{2,\mathrm{loc}}$.
			
            
            
            
          
        
      @article{SM_1995_83_2_a3,
     author = {S. Ya. Makhno},
     title = {Parabolic equations with a~small parameter, and large deviations for diffusion processes},
     journal = {Sbornik. Mathematics},
     pages = {331--346},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_83_2_a3/}
}
                      
                      
                    S. Ya. Makhno. Parabolic equations with a~small parameter, and large deviations for diffusion processes. Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 331-346. http://geodesic.mathdoc.fr/item/SM_1995_83_2_a3/
