Parabolic equations with a small parameter, and large deviations for diffusion processes
Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 331-346 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Nonlinear second-order parabolic equations with a small parameter at the highest derivative and coefficients depending on this parameter are considered. Under weak convergence in $L_{2,\mathrm{loc}}$ of the coefficients of the equation, uniform convergence on compacta of solutions to a generalized solution of a first-order partial differential equation is established. This result is used to justify the principle of large deviations for diffusion processes with small diffusion and coefficients that converge weakly in $L_{2,\mathrm{loc}}$.
@article{SM_1995_83_2_a3,
     author = {S. Ya. Makhno},
     title = {Parabolic equations with a~small parameter, and large deviations for diffusion processes},
     journal = {Sbornik. Mathematics},
     pages = {331--346},
     year = {1995},
     volume = {83},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_83_2_a3/}
}
TY  - JOUR
AU  - S. Ya. Makhno
TI  - Parabolic equations with a small parameter, and large deviations for diffusion processes
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 331
EP  - 346
VL  - 83
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1995_83_2_a3/
LA  - en
ID  - SM_1995_83_2_a3
ER  - 
%0 Journal Article
%A S. Ya. Makhno
%T Parabolic equations with a small parameter, and large deviations for diffusion processes
%J Sbornik. Mathematics
%D 1995
%P 331-346
%V 83
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1995_83_2_a3/
%G en
%F SM_1995_83_2_a3
S. Ya. Makhno. Parabolic equations with a small parameter, and large deviations for diffusion processes. Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 331-346. http://geodesic.mathdoc.fr/item/SM_1995_83_2_a3/

[1] Maslov V. P., Asimptoticheskie metody i teoriya vozmuschenii, Nauka, M., 1988 | MR

[2] Kamin S., “Singular Perturbation Problems and the Hamilton–Jacobi Equation”, Integral Equations and Operator Theory, 9:1 (1986), 95–105 | DOI | MR | Zbl

[3] Fleming W., “Stochastic Control for Solutions of Hamilton–Jacobi–Bellman Equations”, SIAM J. Control Optim., 9:1 (1971), 473–517 | DOI | MR

[4] Koike S., “An Asymptotic Formula for Solutions of Hamilton–Jacobi–Bellman Equations”, Non. Analysis. Theory. Methods and Appl., 11:3 (1987), 429–435 | DOI | MR

[5] Khametov V. V., “Asimptotika obratnogo uravneniya Kolmogorova dlya diffuzionnykh protsessov s maloi diffuziei”, Veroyatnostnye zadachi diskretnoi matematiki, Sb., MIEM, M., 1988, 140–151 | MR

[6] Dubrovskii V. N., “Tochnye asimptoticheskie formuly laplasovskogo tipa dlya markovskikh protsessov”, DAN SSSR, 226:5 (1976), 1001–1004 | MR | Zbl

[7] Venttsel A. D., Freidlin M. I., Fluktuatsii v dinamicheskikh sistemakh pod vozdeistviem malykh sluchainykh vozmuschenii, Nauka, M., 1979 | MR | Zbl

[8] Veretennikov A. Yu., “O bolshikh ukloneniyakh v printsipe usredneniya dlya stokhasticheskikh differentsialnykh uravnenii s periodicheskimi koeffitsientami”, Izv. AN SSSR. Ser. matem., 55:4 (1991), 691–715 | MR

[9] Fleming W., Souganidis P., “PDE – Viscosity Solution Approach to Some Problems of Large Deviations”, Ann. Sc. Normale, 13:2 (1986), 171–192 | MR | Zbl

[10] Kruzhkov S. N., “Obobschennye resheniya nelineinykh uravnenii pervogo poryadka so mnogimi nezavisimymi peremennymi, 1”, Matem. sb., 70:3 (1966), 394–415 | MR | Zbl

[11] Grandall M., Lions P., “Viscosity Solutions of Hamilton–Jacobi Equations”, Trans. Amer. Math. Soc., 277:1 (1983), 1–42 | DOI | MR

[12] Krylov N. V., Nelineinye ellipticheskie i parabolicheskie uravneniya vtorogo poryadka, Nauka, M., 1985 | MR

[13] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[14] Makhno S. Ya., “O bolshikh ukloneniyakh dlya odnogo klassa stokhasticheskikh uravnenii”, Dokl. AN USSR, 7 (1991), 26–28 | MR