On a theorem of Bellman on Fourier coefficients
Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 321-330 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In 1928 Hardy [1] proved that the class $L^p$ $(1\leqslant p<\infty)$ is invariant under the $(C,1)$-transformation of the Fourier coefficients. In 1944 Bellman [3] proved the dual result for the class $L^p$ $(1\leqslant p<\infty)$ with respect to the adjoint transformation of the Fourier coefficients the transpose of the matrix of the $(C,1)$-method. In the present paper a new proof of Bellman's theorem that does not depend on Hardy's theorem is given, and a representation of the function with the transformed Fourier series in terms of the original function, similar to the Hardy representation, is obtained. In addition an inaccuracy in the statement of the second half of Bellman's theorem is corrected. Finally, integral analogues of these results are proved. These analogues were derived on a heuristic level in the paper of Bellman without justifying the computations and without stating the conditions imposed on the functions.
@article{SM_1995_83_2_a2,
     author = {B. I. Golubov},
     title = {On a theorem of {Bellman} on {Fourier} coefficients},
     journal = {Sbornik. Mathematics},
     pages = {321--330},
     year = {1995},
     volume = {83},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_83_2_a2/}
}
TY  - JOUR
AU  - B. I. Golubov
TI  - On a theorem of Bellman on Fourier coefficients
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 321
EP  - 330
VL  - 83
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1995_83_2_a2/
LA  - en
ID  - SM_1995_83_2_a2
ER  - 
%0 Journal Article
%A B. I. Golubov
%T On a theorem of Bellman on Fourier coefficients
%J Sbornik. Mathematics
%D 1995
%P 321-330
%V 83
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1995_83_2_a2/
%G en
%F SM_1995_83_2_a2
B. I. Golubov. On a theorem of Bellman on Fourier coefficients. Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 321-330. http://geodesic.mathdoc.fr/item/SM_1995_83_2_a2/

[1] Hardy G. H., “Notes on some points in the integral calculuc”, Messenger of Math., 58 (1928), 50–52 | Zbl

[2] Loo C.-T., “Note on the properties of Fourier coefficients”, Amer. J. Math., 71 (1949), 269–282 | DOI | MR | Zbl

[3] Bellman R., “A note on a theorem of Hardy on Fourier constants”, Bull. Amer. Soc., 50 (1944), 741–744 | DOI | MR | Zbl

[4] Andersen K. F., “On the transformation of Fourier coefficients of certain classes of functions”, Pacific J. Math., 100:2 (1982), 243–248 | MR | Zbl

[5] Khardi G. G., Littlvud D. E., Polia G., Neravenstva, IL, M., 1948

[6] Titchmarsh E., Vvedenie v teoriyu integralov Fure, Gostekhizdat, M.–L., 1948

[7] Carleson L., “On convergence and growth of partial sums of Fourier series”, Acta Math., 116:1–2 (1966), 135–157 | DOI | MR | Zbl

[8] Zigmund A., Trigonometricheskie ryady, T. II, Mir, M., 1965 | MR

[9] Young F. H., “Transformations of Fourier coefficients”, Proc. Amer. Math. Soc., 3 (1952), 783–791 | DOI | MR | Zbl

[10] Konyushkov A. A., “O klassakh Lipshitsa”, Izv. AN SSSR. Ser. matem., 21:3 (1957), 423–448 | MR | Zbl

[11] Goldberg R. R., “Averages of Fourier coefficients”, Pacific J. Math., 9 (1959), 695–699 | MR | Zbl

[12] Alshynbaeva E., “Preobrazovanie koeffitsientov Fure nekotorykh klassov funktsii”, Mat. zametki, 25:5 (1979), 645–651 | MR | Zbl

[13] Berchiyan O. Ya., “O preobrazovaniyakh koeffitsientov Fure”, Soobsch. AN Gruz. SSR, 137:1 (1990), 25–28 | MR | Zbl

[14] Berchiyan O. Ya., “O preobrazovaniyakh Bellmana koeffitsientov Fure nekotorykh klassov funktsii”, Teoriya funktsii i priblizh., Tr. V Saratovsk. zim. shk., ch. I, Saratov, 1992, 144–147

[15] Berchiyan O. Ya., “O preobrazovaniyakh Khardi i Bellmana koeffitsientov Fure funktsii iz simmetrichnykh prostranstv”, Matem. zametki, 53:4 (1992), 3–12 | MR

[16] Kldiashvili D. V., “O preobrazovaniyakh Khardi koeffitsientov Fure funktsii mnogikh peremennykh”, Vestnik MGU. Ser. I, 1990, no. 5, 12–18 | MR | Zbl

[17] Golubov B. I., “O preobrazovaniyakh Khardi i Bellmana koeffitsientov Fure”, Ryady Fure: teoriya i prilozheniya, In-t matematiki AN Ukrainy, Kiev, 1992, 18–26 | MR

[18] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR