Connection of Lagrangian singularities with Legendrian singularities under stereographic projection
Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 533-540

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the evolute of a smooth closed submanifold in general position in a Euclidean space has the same number of isolated singularities of each simple class as has the front of its stereographic image in a space of 1 higher dimension.
@article{SM_1995_83_2_a14,
     author = {V. D. Sedykh},
     title = {Connection of {Lagrangian} singularities with {Legendrian} singularities under stereographic projection},
     journal = {Sbornik. Mathematics},
     pages = {533--540},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_83_2_a14/}
}
TY  - JOUR
AU  - V. D. Sedykh
TI  - Connection of Lagrangian singularities with Legendrian singularities under stereographic projection
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 533
EP  - 540
VL  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_83_2_a14/
LA  - en
ID  - SM_1995_83_2_a14
ER  - 
%0 Journal Article
%A V. D. Sedykh
%T Connection of Lagrangian singularities with Legendrian singularities under stereographic projection
%J Sbornik. Mathematics
%D 1995
%P 533-540
%V 83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_83_2_a14/
%G en
%F SM_1995_83_2_a14
V. D. Sedykh. Connection of Lagrangian singularities with Legendrian singularities under stereographic projection. Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 533-540. http://geodesic.mathdoc.fr/item/SM_1995_83_2_a14/