Connection of Lagrangian singularities with Legendrian singularities under stereographic projection
Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 533-540
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the evolute of a smooth closed submanifold in general position in a Euclidean space has the same number of isolated singularities of each simple class as has the front of its stereographic image in a space of 1 higher dimension.
@article{SM_1995_83_2_a14,
author = {V. D. Sedykh},
title = {Connection of {Lagrangian} singularities with {Legendrian} singularities under stereographic projection},
journal = {Sbornik. Mathematics},
pages = {533--540},
publisher = {mathdoc},
volume = {83},
number = {2},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_83_2_a14/}
}
TY - JOUR AU - V. D. Sedykh TI - Connection of Lagrangian singularities with Legendrian singularities under stereographic projection JO - Sbornik. Mathematics PY - 1995 SP - 533 EP - 540 VL - 83 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1995_83_2_a14/ LA - en ID - SM_1995_83_2_a14 ER -
V. D. Sedykh. Connection of Lagrangian singularities with Legendrian singularities under stereographic projection. Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 533-540. http://geodesic.mathdoc.fr/item/SM_1995_83_2_a14/