On the massiveness of the set of nonintegrable Hamiltonians
Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 515-532 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A problem concerning Hamiltonians that are reduced via a convergent Birkhoff transformation to a normal form is considered. There is a well-known classical result of C. L. Siegel on the massiveness of the set of nonintegrable Hamiltonians in a neighborhood of an equilibrium state of a system with $n$ degrees of freedom. The main result of this paper, Theorem 3, asserts that Siegel's theorem is valid for $n>2$ under an additional assumption on the Diophantine properties of the eigenvalues of the linearized system.
@article{SM_1995_83_2_a13,
     author = {S. I. Pidkuiko},
     title = {On the massiveness of the~set of nonintegrable {Hamiltonians}},
     journal = {Sbornik. Mathematics},
     pages = {515--532},
     year = {1995},
     volume = {83},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_83_2_a13/}
}
TY  - JOUR
AU  - S. I. Pidkuiko
TI  - On the massiveness of the set of nonintegrable Hamiltonians
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 515
EP  - 532
VL  - 83
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1995_83_2_a13/
LA  - en
ID  - SM_1995_83_2_a13
ER  - 
%0 Journal Article
%A S. I. Pidkuiko
%T On the massiveness of the set of nonintegrable Hamiltonians
%J Sbornik. Mathematics
%D 1995
%P 515-532
%V 83
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1995_83_2_a13/
%G en
%F SM_1995_83_2_a13
S. I. Pidkuiko. On the massiveness of the set of nonintegrable Hamiltonians. Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 515-532. http://geodesic.mathdoc.fr/item/SM_1995_83_2_a13/

[1] Birkgof Dzh. D., Dinamicheskie sistemy, Gostekhizdat, M.–L., 1941

[2] Uitteker E. T., Analiticheskaya dinamika, GTTL, M.–L., 1937

[3] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR

[4] Gelfond A. O., Transtsendentnye i algebraicheskie chisla, GTTL, M., 1952

[5] Shmidt V. M., Diofantovy priblizheniya, Mir, M., 1983 | MR

[6] Narasimkhan R., Analiz na deistvitelnykh i kompleksnykh mnogoobraziyakh, Mir, M., 1971 | Zbl

[7] Rudin U., Osnovy matematicheskogo analiza, Mir, M., 1976

[8] Bryuno A. D., “Normalizatsiya sistemy Gamiltona vblizi invariantnogo tsikla ili tora”, UMN, 44:2 (1989), 49–78 | MR | Zbl

[9] Bryuno A. D., “Normalnaya forma sistemy, blizkoi k gamiltonovoi”, Matem. zametki, 48:5 (1990), 35–46 | MR | Zbl

[10] Bryuno A. D., “Normalnaya forma veschestvennykh differentsialnykh uravnenii”, Matem. zametki, 18:2 (1975), 227–241 | MR | Zbl

[11] Bryuno A. D., Raskhodimost veschestvennogo normalizuyushego preobrazovaniya, Preprint No 62, Inst. Prikl. Matem., M., 1979 | MR | Zbl

[12] Ilyashenko Yu. S., “V teorii normalnykh form analiticheskikh differentsialnykh uravnenii pri narushenii uslovii Bryuno raskhodimost-pravilo, skhodimost-isklyuchenie”, Vestn. MGU. Ser. 1. Matem., mekh., 1981, no. 2, 10–16 | MR | Zbl

[13] Whittaker E. T., “On the solution of dynamical problems in terms of trigonometric series”, Proc. London Math. Soc., 34 (1902), 206–221 | DOI | Zbl

[14] Delaunay C. E., “Theoretie du mourement de la lune”, Paric. Mem. Pres., 28 (1860); 29 (1867)

[15] Siegel C. L., “Über die Existenz einer Normalform analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung”, Math. Annalen, 128 (1954), 144–170 | DOI | MR | Zbl

[16] Siegel C. L., “On the integrals of canonical systems”, Ann. Mathem., 42:3 (1941), 806–822 | DOI | MR | Zbl

[17] Hill G. W., “Remarks on the progress of celestial mechaniqs since the middle of the century”, Bull. Amer. Math. Soc., 2nd ser., 2 (1986), 125–136 | DOI | MR

[18] Lindstedt A., “Beitrang zur Integration der Differentialgleichungen der Störungs theorie”, Izv. Akad. Nauk. S.-Pb., 31:4 (1882)

[19] Poincaré H., Les méthodes nouvelles de la mécanique céleste, Bd. 2, Paris, 1893

[20] Poincaré H., “Sur le problème des trois corps et les équations de la dynamique”, Acta Math., 13 (1890), 1–272

[21] Cherry T. M., “On the solution of Hamiltonian systems of differential equations in the neibourhood of a singular point”, Proc. London Math. Soc., 2:27, 151–170 | Zbl

[22] Vey J., “Orbites périodiques d'un système hamiltonian an roisinage d'un point d'équilibre”, Ann. Scuola Norm. Super. di Pisa. Ser. IV, 5:4 (1978), 757–787 | MR | Zbl

[23] Francoise J. P., “Points périodiques des transformations canoniques”, C. R. S. Paris, 286 (1978), 1215–1217 | MR | Zbl

[24] Ito H., “Convergence of Birkhoff normal forms for integrable systems”, Comm. Math. Helv., 64:3 (1989), 412–461 | DOI | MR | Zbl

[25] Kozlov V. V., “Integriruemost i neintegriruemost v gamiltonovoi mekhanike”, UMN, 38:1 (1983), 3–67 | MR | Zbl