On the massiveness of the~set of nonintegrable Hamiltonians
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 515-532
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A problem concerning Hamiltonians that are reduced via a convergent Birkhoff transformation to a normal form is considered. There is a well-known classical result of C. L. Siegel on the massiveness of the set of nonintegrable Hamiltonians in a neighborhood of an equilibrium state of a system with $n$ degrees of freedom. The main result of this paper, Theorem 3, asserts that Siegel's theorem is valid for $n>2$ under an additional assumption on the Diophantine properties of the eigenvalues of the linearized system.
			
            
            
            
          
        
      @article{SM_1995_83_2_a13,
     author = {S. I. Pidkuiko},
     title = {On the massiveness of the~set of nonintegrable {Hamiltonians}},
     journal = {Sbornik. Mathematics},
     pages = {515--532},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_83_2_a13/}
}
                      
                      
                    S. I. Pidkuiko. On the massiveness of the~set of nonintegrable Hamiltonians. Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 515-532. http://geodesic.mathdoc.fr/item/SM_1995_83_2_a13/
